Portuguese scientists discover new mechanism that regulates formation of blood vessels

Nov 18, 2008

Researchers in one of the external groups of the Instituto Gulbenkian de Ciência (IGC), in Portugal, have discovered a novel mechanism which regulates the process whereby new blood vessels are formed and wounds heal, including chronic wounds, such as those found in diabetic patients and those suffering from morbid obesity. These findings, by Sérgio Dias and his team, are to appear in the new issue of the journal PLoS ONE, and have implications for the development of new therapeutic approaches to healing damaged blood vessels and building new ones.

Working at the Centro de Investigação e Patobiologia Molecular of the Portuguese Institute of Oncology Francisco Gentil, in Lisbon, the team showed that the cells that make new blood vessels (called endothelial cells) are stimulated by an intracellular signalling pathway, mediated by the protein Notch.

The formation of new blood vessels is a crucial step in wound healing: the newly-formed vessels allow anti-inflammatory proteins to reach the wound site, improve oxygenation of the damaged tissue and carry essential nutrients for the re-structuring of the tissue, that is, the skin.

According to Francisco Caiado, a PhD student at the IGC, and first author of this study, "We knew that the endothelial cells are stimulated by cells originating in the bone-marrow, the so-called bone-marrow derived precursor cells. We have now shown that the actual stimulus happens through the Notch protein, found on the bone-marrow derived cells. Upon activation, Notch promotes the adhesion of the precursor cells to the site of the lesion, where they stimulate the endothelial cells to make new blood vessels".

Chronic skin wounds are an increasing medical problem, since they are commonly found in diabetic patients and in those suffering from morbid obesity. Diabetic patients may develop "diabetic foot", a condition whereby wounds do not heal leading, in the most severe cases, to amputation.

Source: Instituto Gulbenkian de Ciencia

Explore further: AncientBiotics - a medieval remedy for modern day superbugs?

Related Stories

Image: Human endothelial cells experiment bound for ISS

Feb 25, 2015

Components of human endothelial cells stained for identification. In red is the 'actin' protein that allows the cells to move, adhere, divide and react to stimuli. In blue are the cell nuclei containing DNA.

Building a better course starts with the syllabus

Mar 17, 2015

Recent award-winning research from the University of Virginia's Teaching Resource Center shows that tailoring teaching to how students learn improves courses and creates long-lasting impact.

Sweet nanoparticles target stroke

Mar 12, 2015

Materials resulting from chemical bonding of glucosamine, a type of sugar, with fullerenes, kind of nanoparticles known as buckyballs, might help to reduce cell damage and inflammation occurring after stroke. ...

Recommended for you

'Google Maps' for the body: A biomedical revolution

23 minutes ago

A world-first UNSW collaboration that uses previously top-secret technology to zoom through the human body down to the level of a single cell could be a game-changer for medicine, an international research ...

New compounds could offer therapy for multitude of diseases

1 hour ago

An international team of more than 18 research groups has demonstrated that the compounds they developed can safely prevent harmful protein aggregation in preliminary tests using animals. The findings raise hope that a new ...

Novel nanoparticle therapy promotes wound healing

Mar 26, 2015

An experimental therapy developed by researchers at Albert Einstein College of Medicine of Yeshiva University cut in half the time it takes to heal wounds compared to no treatment at all. Details of the therapy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.