A big bunch of tomatoes?

Nov 18, 2008

Why do poppies and sunflowers grow as a single flower per stalk while each stem of a tomato plant has several branches, each carrying flowers? In a new study, published in this week's issue of the open access journal PLoS Biology, Dr. Zachary Lippman and colleagues identify a genetic mechanism that determines the pattern of flower growth in the Solanaceae (nightshade) family of plants that includes tomato, potato, pepper, eggplant, tobacco, petunia, and deadly nightshades. Manipulation of the identified pathway can turn the well known tomato vine into a highly branched structure with hundreds of flower-bearing shoots, and may thereby result in increased crop yields.

While the development of individual flowers is well understood, the molecular mechanisms that determine the architecture of inflorescences - flower-bearing shoots - are not. The way that inflorescences branch determines the number and distribution of flowers; in peppers (capsicum) inflorescences do not branch, so flowers are singular; in tomatoes, inflorescence branching is repetitive and regular, forming a zigzagged vine The tomato mutants anantha (an) and compound inflorescence (s) have long been known to produce large numbers of branches and flowers, and the new work elucidates the underlying genetics.

Dr. Lippman, and a team of researchers drawn from three institutions in Israel, investigated inflorescence branching by studying these mutant tomato plants. They identified the genes responsible: the anantha (AN) and compound inflorescence (S) genes. S is a member of the well known homeobox gene family, which plays a crucial regulatory role in patterning both animals and plants. Lippman et al. have shown that manipulation of these genes in tomato plants can dramatically alter the architecture and number of inflorescences, and that altered activity of AN in pepper plants can stimulate branching. Variation in S also explains the branching variation seen in domestically grown tomato strains.

The two genes work in sequence to regulate the timing of development of a branch and a flower – so, for example, slowing down the pathway that makes a flower allows for additional branches to grow. While this study by Lippman et al. focuses on variations in particular nightshades, the insight leads to a new understanding of how many plants, such as trees, control their potential to branch.

Citation: Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I, et al. (2008) The making of a compound inflorescence in tomato and related nightshades. PLoS Biol 6(11): e288. doi:10.1371/journal.pbio.0060288
biology.plosjournals.org/perls… journal.pbio.0060288

Source: Public Library of Science

Explore further: Monkeys fear big cats less, eat more, with humans around

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Monkeys fear big cats less, eat more, with humans around

17 minutes ago

Some Monkeys in South Africa have been found to regard field scientists as human shields against predators and why not if the alternative is death by leopard? The researchers found the monkeys felt far safer ...

Study indicates large raptors in Africa used for bushmeat

13 hours ago

Bushmeat, the use of native animal species for food or commercial food sale, has been heavily documented to be a significant factor in the decline of many species of primates and other mammals. However, a new study indicates ...

The microbes make the sake brewery

14 hours ago

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

Fighting bacteria—with viruses

15 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

User comments : 0