New research identifies key contributor to Alzheimer's disease process

Nov 14, 2008

Walter J. Lukiw, PhD, Associate Professor of Neuroscience and Ophthalmology at LSU Health Sciences Center New Orleans, is the lead author of a paper identifying, for the first time, a specific function of a fragment of ribonucleic acid (RNA), once thought to be no more than a byproduct, in regulating inflammation and the development of Alzheimer's disease.

The paper, An NF-kB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer's disease and in stressed human brain cells, will be published in the November 14, 2008 issue of The Journal of Biological Chemistry.

Dr. Lukiw's lab at the LSU Health Sciences Center New Orleans Neuroscience Center of Excellence has shown that this tiny piece of RNA, or microRNA, called miRNA-146a is found in increased amounts in stressed human brain cells and in Alzheimer's disease, and that it plays a crucial role in the regulation of inflammation and disease-related neuropathology thought to be integral to the Alzheimer's disease process.

Dr. Lukiw's research team, which also included LSUHSC's Jian Guo Cui, MD, PhD and Yuhai Zhao, a post doctoral student in the lab, demonstrated in human brain cells in primary culture that MiRNA-146a targets the messenger RNA of an important anti-inflammatory regulator called complement factor H (CFH). Testing both control cells and Alzheimer's disease-affected tissues, they found that miRNA-164a appears to reduce the amount and bioavailability of CFH, promoting the inflammation of brain cells and contributing to the development of Alzheimer's disease.

The most common form of dementia, Alzheimer's Disease is a fatal, age-related neurodegenerative disorder characterized clinically by the progressive erosion of cognition and memory, and neuropathologically by defective gene expression and increased inflammatory cell signaling. According to the Alzheimer's Foundation of America, it is estimated that Alzheimer's disease currently affects more than 5 million Americans and it is projected that the number could more than triple to 16 million by mid-century.

"The goal of these neuroscience research studies is to further our understanding of the molecular biology and genetic mechanisms associated with Alzheimer's Disease and to advance the design of therapeutic strategies to counteract this common and tragic neurological disorder," said Dr. Lukiw.

Source: Louisiana State University Health Sciences Center

Explore further: Philippines boosts MERS monitoring after UAE nurse scare

add to favorites email to friend print save as pdf

Related Stories

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

Cholesterol transporter structure decoded

Mar 21, 2014

The word "cholesterol" is directly linked in most people's minds with high-fat foods, worrying blood test results, and cardiovascular diseases. However, despite its bad reputation, cholesterol is essential ...

Recommended for you

US orders farms to report pig virus infections

15 hours ago

The U.S. government is starting a new program to help monitor and possibly control the spread of a virus that has killed millions of pigs since showing up in the country last year.

Foreigner dies of MERS in Saudi

16 hours ago

A foreigner has died after she contracted MERS in the Saudi capital, the health ministry said on announced Friday, bringing the nationwide death toll to 73.

Vietnam battles fatal measles outbreak

20 hours ago

Vietnam is scrambling to contain a deadly outbreak of measles that has killed more than 100 people, mostly young children, and infected thousands more this year, the government said Friday.

New clues on tissue scarring in scleroderma

20 hours ago

A discovery by Northwestern Medicine scientists could lead to potential new treatments for breaking the cycle of tissue scarring in people with scleroderma.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

superhuman
not rated yet Nov 14, 2008
New research identifies key contributor to Alzheimer's disease process


Lies. They don't identify key contributor, they research one of the many differences between cells form healthy patients and from patients with with Alzheimer's disease. Patients with Alzheimer's disease have more of a specific molecule (miRNA). Authors of the paper test this molecule and find that it inhibits cells inflammatory pathway.

This molecule can be a contributor or it can be a consequence of the disease. Even if it is a contributor nothing is known about the reason for its upregulation.

Here is the abstract:

Human brains retain discrete populations of micro RNA (miRNA) species that support homeostatic brain gene expression functions; however, specific miRNA abundance is significantly altered in neurological disorders such as Alzheimer disease (AD) when compared with age-matched controls. Here we provide evidence in AD brains of a specific up-regulation of an NF-kappaB-sensitive miRNA-146a highly complementary to the 3'-untranslated region of complement factor H (CFH), an important repressor of the inflammatory response of the brain. Up-regulation of miRNA-146a coupled to down-regulation of CFH was observed in AD brain and in interleukin-1beta, Abeta42, and/or oxidatively stressed human neural (HN) cells in primary culture. Transfection of HN cells using an NF-kappaB-containing pre-miRNA-146a promoter-luciferase reporter construct in stressed HN cells showed significant up-regulation of luciferase activity that paralleled decreases in CFH gene expression. Treatment of stressed HN cells with the NF-kappaB inhibitor pyrollidine dithiocarbamate or the resveratrol analog CAY10512 abrogated this response. Incubation of an antisense oligonucleotide to miRNA-146a (anti-miRNA-146a; AM-146a) was found to restore CFH expression levels. These data indicate that NF-kappaB-sensitive miRNA-146a-mediated modulation of CFH gene expression may in part regulate an inflammatory response in AD brain and in stressed HN cell models of AD and illustrate the potential for anti-miRNAs as an effective therapeutic strategy against pathogenic inflammatory signaling.

More news stories

Treating depression in Parkinson's patients

A group of scientists from the University of Kentucky College of Medicine and the Sanders-Brown Center on Aging has found interesting new information in a study on depression and neuropsychological function in Parkinson's ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.