Protecting neurons could halt Alzheimer's, Parkinson's diseases

Nov 13, 2008

Researchers at Southern Methodist University (SMU) and The University of Texas at Dallas (UTD) have identified a group of chemical compounds that slow the degeneration of neurons, a condition behind old-age diseases like Alzheimer's, Parkinson's and amyotrophic lateral sclerosis (ALS).

Their findings are featured in the November 2008 edition of Experimental Biology and Medicine. SMU Chemistry Professor Edward R. Biehl and UTD Biology Professor Santosh D'Mello teamed to test 45 chemical compounds. Four were found to be the most potent protectors of neurons, the cells that are core components of the human brain, spinal cord and peripheral nerves.

The most common cause of neurodegenerative disease is aging. Current medications only alleviate the symptoms but do not affect the underlying cause – degeneration of neurons. The identification of compounds that inhibit neuronal death is of urgent and critical importance.

The synthesized chemicals identified by Biehl and D'Mello, called "3-substituted indolin-2-one compounds" are derivatives of another compound called GW5074 which was shown to prevent neurodegeneration in a past report published by the D'Mello lab. While effective at protecting neurons from decay or death, GW5074 is toxic to cells at slightly elevated doses, which makes it unsuitable for clinical testing in patients.

The newly identified, second generation compounds maintain the protective feature of GW5074 but are not toxic – even at very high doses – and hold promise in halting the steady march of neurodegenerative diseases like Alzheimer's and Parkinson's.

"Sadly, neurodegenerative diseases are a challenge for our elderly population," D'Mello said. "People are living longer and are more impacted by diseases like Alzheimer's, Parkinson's and Amyotrophic Lateral Sclerosis (ALS) than ever before — which means we need to aggressively look for drugs that treat diseases. But most exciting now are our efforts to stop the effects of brain disease right in its tracks. Although the newly discovered compounds have only been tested in cultured neurons and mice, they do offer hope."

Source: Southern Methodist University

Explore further: Research into brain control of liver lipid production could cause break in obesity, diabetes treatment

add to favorites email to friend print save as pdf

Related Stories

Davos elites warned about catastrophic cyberattacks

13 hours ago

Attacks on power plants, telecommunications and financial systems, even turning all of Los Angeles' traffic lights green: Davos elites were warned Saturday of the terrifying possibilities of modern cyber ...

Recommended for you

Researchers design tailored tissue adhesives

3 hours ago

After undergoing surgery to remove diseased sections of the colon, up to 30 percent of patients experience leakage from their sutures, which can cause life-threatening complications.

New cells may help treat diabetes

18 hours ago

Starting from human skin cells, researchers at the University of Iowa have created human insulin-producing cells that respond to glucose and correct blood-sugar levels in diabetic mice. The findings may represent ...

Using stem cells to grow new hair

Jan 27, 2015

In a new study from Sanford-Burnham Medical Research Institute (Sanford-Burnham), researchers have used human pluripotent stem cells to generate new hair. The study represents the first step toward the development ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.