Researchers Studying Little-Known Genetic Sequences

Nov 13, 2008

(PhysOrg.com) -- University of Arizona researchers are among a group of scientists who have discovered a source of previously scarce small RNA molecules. Their finding, which was recently published in the Proceedings of the National Academy of Sciences, provides a valuable new tool for better understanding how plants grow and develop.

All living things contain small RNA molecules, said Vicki Chandler, a UA Regents' Professor and director of the UA's BIO5 Institute. Some small RNA molecules help the genes in cells carry out their instructions, others silence genes and prevent them from acting. In plants, two types of small RNA molecules have been studied, one of them 21 nucleotides long, the other 24 nucleotides long. Nucleotides are the atomic "building blocks" of all genetic material.

Working with a mutant strain of maize, Chandler and her colleagues have honed in on a distinct class of small RNA molecule that is 22 nucleotides long. The 21- and 22-nucleotide RNAs are scarce in most plants, including wild maize, but in the mutant strain, the researchers discovered that they were common because the 24-nucleotide RNAs are dramatically reduced.

Having a reliable source of the 21- and 22-nucleotide RNA means plant biologists can now study these molecules in depth, and work out the pathways they follow to regulate plant genes. "We don't yet know exactly what it (the 22-nucleotide RNA) is doing in the cells, so there'll be a whole new line of experiments as we try to figure it out," Chandler said.

She also said that there may well be other understudied small RNA molecules waiting to be looked at as well. "I think we've only seen the tip of the iceberg with these small regulatory RNAs. There's still a lot to learn, and that's exciting."

The information that results from studying "new" small RNAs will become doubly valuable as other plant biologists, including BIO5 member Rod Wing, finish refining the genetic sequence of maize. "The two together (the small RNA molecules and the sequenced maize genome) will provide a lot of new tools for better understanding plant growth and function," Chandler said.

That work could ultimately have implications for everything from environmental and ecological issues to agriculture and medicine. "Gene regulation is fundamental to so many issues," Chandler said. The 22-nucleotide RNA molecule, she said "is one example of a pathway that – once it's worked out – could be targeted to address them."

Source: University of Arizona

Explore further: In between red light and blue light: Researchers discover new functionality of molecular light switches

add to favorites email to friend print save as pdf

Related Stories

MasterCard, Zwipe announce fingerprint-sensor card

7 hours ago

On Friday, MasterCard and Oslo, Norway-based Zwipe announced the launch of a contactless payment card featuring an integrated fingerprint sensor. Say goodbye to PINs. This card, they said, is the world's ...

Plastic nanoparticles also harm freshwater organisms

9 hours ago

Organisms can be negatively affected by plastic nanoparticles, not just in the seas and oceans but in freshwater bodies too. These particles slow the growth of algae, cause deformities in water fleas and impede communication ...

Atomic trigger shatters mystery of how glass deforms

9 hours ago

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

US company sells out of Ebola toys

17 hours ago

They might look tasteless, but satisfied customers dub them cute and adorable. Ebola-themed toys have proved such a hit that one US-based company has sold out.

UN biodiversity meet commits to double funding

17 hours ago

A UN conference on preserving the earth's dwindling resources wrapped up Friday with governments making a firm commitment to double biodiversity aid to developing countries by 2015.

Recommended for you

Scientists see how plants optimize their repair

4 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

User comments : 0