'Femtomolar Optical Tweezers' May Enable Sensitive Blood Tests

Nov 13, 2008
'Femtomolar Optical Tweezers' May Enable Sensitive Blood Tests
Basic scheme of an optical tweezer-based sensor of biological particles. A microsphere covered with a specific antigen (such as a virus or other infectious agent) is trapped and pulled away from a surface containing the corresponding antibodies. The minimum amount of force applied to the tweezers to break the bonds can provide information on the concentration of antibodies on the surface. Credit: NIST

(PhysOrg.com) -- Cutting-edge “tweezers” are so sensitive that they can feel the tell-tale tug of tiny concentrations of pathogens in blood samples, yet don’t ever need to be sterilized—or even held—as they are ephemeral and weightless.

The National Institute of Standards and Technology has licensed a patented “optical tweezers” technique for detecting and measuring very small concentrations of a biological substance—such as a virus on a surface. NIST has issued a non-exclusive license for the technology to Haemonetics, a global health care company that provides blood management technologies for hospitals and blood and plasma collection agencies.

Optical tweezers are actually tightly focused laser beams. They can trap certain objects, such as latex microspheres or biological cells, and move them around in water. This occurs because the lasers' electric fields interact with electric charges on the objects.

To detect disease-causing agents, researchers can coat a microsphere with antibody particles and then touch it to a surface containing infectious particles (antigens). The antigens then stick to the antibodies on the sphere, reminiscent of Velcro, in which loops on one strip combine with hooks on the other.

By determining how much laser power is required to pull the microsphere away from the surface, one can then calculate the amount of force needed to break off the antibodies from the antigens and thus count the number of individual antigens that were bound to the sphere. This in turn can detect and count biological antigens at extraordinarily low “femtomolar” concentrations—roughly equivalent to one antigen particle per quadrillion (1,000,000,000,000,000) water molecules.

Following up on earlier work in optical tweezers in the industrial and academic research communities in the 1970s, the licensed technology was patented in 1997 (patent #5,620,857), as a result of research conducted under the NIST BioSensor Consortium. The inventors are Howard Weetall (since retired), Kristian Helmerson, and guest researcher Rani Kishore.

Provided by NIST

Explore further: Soft, energy-efficient robotic wings

Related Stories

Researcher discovers new salmonella serotype

Jan 19, 2015

Lubbock is known for many things. Some of them are reasons to celebrate, like being the home of Buddy Holly. Some portray the city in negative ways, like dust storms.

M6P deficiency leaves B cells out of sorts

Jan 19, 2015

A group of white blood cells known as B cells, which play a key role in the human immune response, need a protein-targeting signal called mannose 6-phosphate (M6P) in order to proliferate, differentiate, ...

New method for non-invasive prostate cancer screening

Sep 02, 2014

Cancer screening is a critical approach for preventing cancer deaths because cases caught early are often more treatable. But while there are already existing ways to screen for different types of cancer, ...

Recommended for you

Soft, energy-efficient robotic wings

11 hours ago

Dielectric elastomers are novel materials for making actuators or motors with soft and lightweight properties that can undergo large active deformations with high-energy conversion efficiencies. This has ...

Super sensitive measurement of magnetic fields

Mar 30, 2015

There are electrical signals in the nervous system, the brain and throughout the human body and there are tiny magnetic fields associated with these signals that could be important for medical science. Researchers ...

New idea for Dyson sphere proposed

Mar 30, 2015

(Phys.org)—A pair of Turkish space scientists with Bogazici University has proposed that researchers looking for the existence of Dyson spheres might be looking at the wrong objects. İbrahim Semiz and ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

lem
not rated yet Nov 15, 2008
I'm thinking mini tractor beam

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.