Rheumatoid arthritis breakthrough

Nov 12, 2008

Rheumatoid arthritis is a painful, inflammatory type of arthritis that occurs when the body's immune system attacks itself. A new paper, published in this week's issue of PLoS Biology, reports a breakthrough in the understanding of how autoimmune responses can be controlled, offering a promising new strategy for therapy development for rheumatoid arthritis.

Normally, immune cells develop to recognise foreign material – antigens; including bacteria - so that they can activate a response against them. Immune cells that would respond to 'self' and therefore attack the body's own cells are usually destroyed during development. If any persist, they are held in check by special regulatory cells that provide a sort of autoimmune checkpoint. A key player in these regulatory cells is a molecule called Foxp3. People who lack or have mutated versions of the Foxp3 gene lack or have dysfunctional immune regulation, which causes dramatic autoimmune disease.

Scientists at the Medical Research Council's Laboratory of Molecular Biology in Cambridge, and funded by the Arthritis Research Campaign, have genetically engineered a drug-inducible form of Foxp3. Using this, scientists can 'switch' developing immune cells into regulatory cells that are then capable of suppressing the immune response.

Dr. Alexander Betz, Group Leader at the MRC laboratory, explains: "We have generated a modified form of Foxp3 which can be introduced into immune cells using genetic engineering techniques and then activated by a simple injection. When administered to and activated in animal models of arthritis, the modified cells inhibit or even reverse the disease process."

Further work is now aimed at elucidating the detailed molecular mechanisms involved in Foxp3 function, and transferring the experimental approach to human cells.

"First, we will develop a human Foxp3 factor and then assess its function in human arthritis models," said Dr Betz. "To be viable as a therapeutic option, the regulatory cells must fulfill certain criteria; they must be tissue matched to the patient for compatibility; they must only block the targeted disease and not the whole body immune response; and they have to home correctly to their target tissue. Establishing these criteria will be the key focus of our research.

"If Foxp3 functions as a key developmental switch in human immune cells, there is potential for a new avenue of therapy development that could transform arthritis treatment is substantial," he added.

Citation: Andersen KG, Butcher T, Betz AG (2008) Specific immunosuppression with inducible Foxp3-transduced polyclonal T cells. PLoS Biol 6(11): e276. doi:10.1371/journal.pbio.0060276
biology.plosjournals.org/perls… journal.pbio.0060276

Source: Public Library of Science

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Russia turns back clocks to permanent Winter Time

9 hours ago

Russia on Sunday is set to turn back its clocks to winter time permanently in a move backed by President Vladimir Putin, reversing a three-year experiment with non-stop summer time that proved highly unpopular.

UN climate talks shuffle to a close in Bonn

9 hours ago

Concern was high at a perceived lack of urgency as UN climate negotiations shuffled towards a close in Bonn on Saturday with just 14 months left to finalise a new, global pact.

Microsoft beefs up security protection in Windows 10

13 hours ago

What Microsoft users in business care deeply about—-a system architecture that supports efforts to get their work done efficiently; a work-centric menu to quickly access projects rather than weather readings ...

New iPad cellular models have Apple SIM flexibility

Oct 19, 2014

Cellular-enabled iPad models are under a new paradigm, said AppleInsider, regarding the Apple SIM. Apple's newest iPad models with cellular connectivity use a SIM card which tech sites said could eventually ...

Comet Siding Spring whizzes past Mars (Update)

Oct 19, 2014

A comet the size of a small mountain and about as solid as a pile of talcum powder whizzed past Mars on Sunday, dazzling space enthusiasts with the once-in-a-million-years encounter.

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0