How evolution learns from past environments to adapt to new environments

Nov 07, 2008

The evolution of novel characteristics within organisms can be enhanced when environments change in a systematic manner, according to a new study by Weizmann Institute researchers. Merav Parter, Nadav Kashtan and Uri Alon suggest that in environments that vary over time in a non-random way, evolution can learn the rules of the environment and develop organisms that can readily generate novel useful traits with only a few mutations. Details are published November 7 in the open-access journal PLoS Computational Biology.

The ability to generate novelty is one of the main mysteries in evolutionary theory. Recently, discoveries in evolution, genetics and developmental biology have been integrated to suggest that organisms have facilitated variation: a design whereby random genetic changes result in novel characteristics (phenotypes) that could be useful. For example, any one of many possible mutations within birds can result in a new beak shape appropriate for a new environment. This leaves the question of how facilitated variation spontaneously evolves.

In this study Parter, Kashtan and Alon began with the observation that environments in nature seemingly vary according to common rules or regularities. They proposed that organisms can learn how previous environments changed, and then use this information for their evolutionary advantage in the future. For example, if the available seeds tended to vary in size and hardness along history, then bird species might have learned to develop beaks with an easily tunable size and strength.

To check their hypothesis, the group employed computer simulations of evolution of simple computational 'organisms'. These organisms were evolved under two different scenarios: The first class evolved under unchanging environment, and the second class evolved under a systemically changing environment. The two scenarios yielded organisms with different designs. The organisms evolved under varying environments stored information about their history in their genome and developed a special modular design. Interestingly, they were able to generate novel useful phenotypes for a novel environment, as long as it shared the same rules with past environments.

The present study demonstrates the large effect the environment can have on the evolution of biological designs, and bring us another step forward towards understanding how the ability to generate useful novelties evolve.

Citation: Parter M, Kashtan N, Alon U (2008) Facilitated Variation: How Evolution Learns from Past Environments To Generalize to New Environments. PLoS Comput Biol 4(11): e1000206. doi:10.1371/journal.pcbi.1000206 www.ploscompbiol.org/doi/pcbi.1000206

Source: Public Library of Science

Explore further: The vital question: Why is life the way it is?

Related Stories

Development of a carnivorous pitcher leaf

Mar 16, 2015

Carnivorous plants have strange-shaped leaves, and they can grow on nutrient-poor environments by trapping and eating small animals. Charles Darwin, often called "the father of evolution", was also interested ...

Assessing feedback interactions in a creative setting

Mar 11, 2015

Feedback - the objective response, opinion, or input - is something most of us experience either at work or amongst friends to bodies of work or projects that are complete. But in the world of creative processes - where no ...

Recommended for you

The vital question: Why is life the way it is?

1 hour ago

The Vital Question: Why is life the way it is? is a new book by Nick Lane that is due out on April 23rd. His question is not one for a static answer but rather one for a series of ever sharper explanations—explanations that a ...

US gives threatened status to northern long-eared bat

1 hour ago

The federal government said Wednesday that it is listing the northern long-eared bat as threatened, giving new protections to a species that has been nearly wiped out in some areas by the spread of a fungal ...

Emu movements chronicled in seed dispersal project

1 hour ago

GPS technology attached to emus (Dromaius novaehollandiae) has reinforced the role the world's second largest extant bird plays in dispersing seeds in the environment as well as indicate they have started ...

Food poisoning: New detection method for bacterial toxin

1 hour ago

The Bacillus cereus bacteria is one of the potential causes of food poisoning. Indeed, a recent study in Analytical and Bioanalytical Chemistry shows that this versatile pathogen produces 19 different varian ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.