Researchers develop ultrafast oscilloscope on a chip

Nov 06, 2008 By Bill Steele
In the ultrafast optical oscilloscope developed at Cornell, light from a broadband laser is passed through a length of optical fiber that spreads it into a pulse whose wavelength varies with time; and mixed with an optical signal -- also passed through a delay to match -- whose intensity varies with time. The readout is a new pulse whose spectrum matches the original waveform. The technique can display waveforms stretching over just a few picoseconds with a resolution of a few femtoseconds.

(PhysOrg.com) -- As photonics -- using beams of light in place of electricity for communications and computing -- becomes more common, engineers need new tools for troubleshooting. Now researchers at Cornell have created a way to plot the waveform of an ultrashort-lived optical signal with a resolution of less than a trillionth of a second.

Several current methods can measure such brief waveforms by averaging many repeating events, but the new method -- using an "ultrafast optical oscilloscope" -- can catch those frustrating events that happen only once in a while, the Cornell researchers said.

"We can make measurements of very short optical phenomena. The signal can be very weak, and it doesn't have to be repetitive," said Alexander Gaeta, Cornell professor of applied and engineering physics. Applications include analyzing intermittent glitches in fiber-optic communications and observing such fast-moving events as chemical reactions or laser fusion, he said.

The device is described in the Nov. 6 issue of the journal Nature (455: 7218) by Gaeta and colleagues including Michal Lipson, associate professor of electrical and computer engineering, and postdoctoral researcher Mark Foster.

The innovation converts "time to frequency" using a process called four-wave mixing, in which two beams of light, referred to as the signal and the pump, are combined in a narrow channel -- in this case a silicon waveguide on a chip, 300-by-750 nanometers in cross section. The narrow space forces the two beams to exchange energy, and a copy of the signal at a new wavelength emerges. The wavelength of the copy depends on the wavelength of the pump, and for this application the wavelength of the pump changes linearly in time.

The pump pulse is generated by a laser that outputs a broad band of wavelengths, and sent through a 50-meter length of optical fiber. Each wavelength of light travels at a slightly different speed in the fiber, so the pump pulse stretches into a stream in which wavelength varies continuously over time. In the four-wave mixing chip the stream is combined with the waveform to be analyzed, which varies in intensity over time. What emerges is a pulse in which each tiny moment of the input waveform is represented by a different wavelength of light, and the intensity, or brightness, of the light at that wavelength corresponds to the intensity of the input wave at that moment.

The result is fed into a spectrometer, which produces a graph of the intensity of light at each wavelength, and that graph corresponds to the original temporal waveform.

Lipson's research group is developing a dispersive waveguide on a chip that will replace the 50 meters of fiber, as well as a spectrometer on a chip, Gaeta said, so that the entire device eventually can be fabricated on a single chip.

The work is supported by the Defense Advanced Research Projects Agency, the National Science Foundation and the New York Office of Science, Technology and Academic Research.

Provided by Cornell University

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

Harnessing randomness to improve lasers

Jan 15, 2014

Randomly arranged items usually have poor optical properties. The rough—or random—surface of a frosted-glass window, for example, obscures the view of an object. The optical industry therefore expends ...

Controllable mode competition in a phonon laser

Nov 20, 2013

Using a novel realization of a "phonon laser," scientists at PML and the Joint Quantum Institute (JQI) have observed and learned to control a process called mode competition. This process occurs routinely ...

Lasers offer an automated way to test drinking water

Oct 22, 2013

To keep drinking water clean, experts are constantly monitoring our supply to check it for contaminants. Now laser technology will give them a helping hand: a new system automatically analyzes water samples ...

Recommended for you

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 0

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.