Maternal Obesity Can Program Fetal Brain to Induce Adult-onset Obesity

Nov 04, 2008

(PhysOrg.com) -- Researchers at the University at Buffalo have found that fetuses of obese mother rats were programmed in utero to develop obesity in adulthood.

Moreover, they have shown for the first time that the metabolic programming occurs in the fetal hypothalamus, the area of the brain responsible for maintaining the body's energy homeostasis (body weight) throughout life.

Levels of the hormones insulin and leptin also were elevated in fetuses of these obese mother rats, abnormalities that have been correlated with increased appetite and insulin resistance (a prelude to diabetes), as well as obesity and hypertension.

"Our earlier studies looked at newborn rats of the obese mothers in the post-weaning period, so we didn't know how early this programming occurred," said Mulchand Patel, Ph.D., UB Distinguished Professor of Biochemistry and senior author on the study. "Now we know it occurs in utero and specifically in the hypothalamus.

"While these studies were done with rats, there is good reason to think the mechanism would be similar in humans," he said. " The fact that more than one-third of women of child-bearing age in the United States are expected to be overweight or obese during pregnancy, based on a 2003 study, does not portend well for good health of their offspring."

The new findings were published in the October 2008 issue of the American Journal of Physiology, Endocrinology and Metabolism. Malathi Srinivasan, Ph.D., research scientist in the UB Department of Biochemistry, is first author.

Metabolic programming, sometimes called dietary patterning, isn't a new phenomenon, Patel noted. "Epidemiologic studies of malnourished mothers showed that their babies often were underweight and at increased risk for several chronic diseases as adults. Animal studies on maternal protein malnourishment or caloric restriction have shown that pre- and immediate postnatal nutritional modifications have long-term consequences on adult-onset diseases."

Patel and colleagues are pioneers in the investigation of metabolic programming effects when the composition of the diet is manipulated -- changing the percentages of carbohydrates and fat, while keeping calories constant.

Patel reported evidence of metabolic programming in 2002, when his laboratory showed that in rats, consumption of a milk formula high in carbohydrates during the critical early weeks of postnatal life caused permanent changes in pancreatic islets, leading to overproduction of insulin and development of obesity in adulthood.

"Metabolic signals are reset in response to a high carbohydrate milk formula given to newborn rats during the suckling period, which induces permanent changes at the molecular level in our rat model," Patel said. "The HC (high carbohydrate) phenotype is maintained for life and is spontaneously transmitted to succeeding generations."

Unlike many models investigating the role of maternal obesity on their offspring, the mother rats used in this study consumed normal laboratory chow during pregnancy, Paten noted.

"Our findings that malprogramming effects induced during fetal development in the altered intrauterine environment in obese mother rats predispose the offspring for adult-onset obesity underscore the importance of women maintaining optimal conditions during their pregnancies," said Patel.

Additional contributors to the study were Catherine Dobbs and Tao Gao, from the UB Department of Biochemistry; Hasam Ghanim and Paresh Dandona, from the UB Department of Medicine; and Peter J. Ross and Richard W. Browne, from the UB Department of Biotechnical and Clinical Laboratory Sciences -- all part of UB's School of Medicine and Biomedical Sciences.

Ghanim and Dandona also are affiliated with Kaleida Health's Diabetes and Endocrinology Center of Western New York.

Patel's research is supported in part by grants from the National Institutes of Health.

Provided by University at Buffalo

Explore further: Drugs used to treat lung disease work with the body clock

add to favorites email to friend print save as pdf

Related Stories

Sapphire talk enlivens guesswork over iPhone 6

3 hours ago

Sapphire screens for the next iPhone? Sapphire is second only to diamond in hardness scratch-proof properties, used in making LEDs, missiles sensors, and on screens for luxury-tier phones. Last year, the ...

The source of the sky's X-ray glow

6 hours ago

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

Recommended for you

New technology allows hair to reflect almost any color

Jul 25, 2014

What if you could alter your hair to reflect any color in the spectrum? What if you could use a flatiron to press a pattern into your new hair color? Those are possibilities suggested by researchers from ...

User comments : 0