Genetic disorder sheds light on enzyme's role in bone metabolism

Nov 04, 2008

Pycnodysostosis, a condition from which the painter Henri de Toulouse-Lautrec suffered, is a genetic disease characterized by short stature. This rare disease, surprisingly, provides a window into how joints are destroyed by arthritis. It is caused by deficiency of an enzyme known as cathepsin K which hampers osteoclasts (the cells that break down bone in bone modeling and repair), leading to poor bone resorption and dense, brittle bones.

Cathepsin K's role in bone metabolism has largely been studied using mouse models, but a new study examines the enzyme's role in bone resorption in a human patient and shows that it is not required to break down bone. The study was published in the November issue of Arthritis & Rheumatism (www3.interscience.wiley.com/journal/76509746/home).

Led by Professor Yrjö T. Konttinen of Helsinki University Central Hospital in Helskinki, Finland , the study involved a 55-year-old female patient with pycnodysostosis who also developed psoriatic arthritis. Since the patient lacked cathepsin K due to her condition, researchers hypothesized that this would protect her from the bone erosions in the hands and feet normally seen in psoriatic arthritis. However, she did in fact develop extensive erosions and destructive bone changes in her hands. Blood analysis was conducted to examine the proteinases (enzymes that break down proteins) responsible for bone degradation as well as the cellular mechanisms of bone resorption.

The analyses showed that the osteoclasts formed by the patient lacked cathepsin K, which was expected. Surprisingly, however, this deficiency did not prevent cells from resorbing bone, although the resorption was abnormal. In bone resorption, osteoclasts attach to the bone and dissolve bone mineral in the matrix, a process that appears to proceed normally even in pycnodysostosis. In a second step, known as collagenolysis, peptide bonds in the collagen of the demineralized bone matrix are broken down. The authors expected that this step would be defective in the cells of a patient who lacked cathepsin K, but instead found that it was not, since the patient's osteoclasts showed evidence of bone resorption.

"The results of our study indicate that, against the dogma, cathepsin K is not necessary for osteoclast-mediated bone resorption," the authors state. "The present results and some very recent findings suggest that even total inhibition of cathepsin K does not protect against pathologic bone destruction in arthritis." This indicates that other proteinases may play a role in bone collagen destruction when cathepsin K is not present. The authors conclude: "These findings may be pertinent to our understanding of the functions of cathepsin K inhibitors, which are currently being developed as drugs to treat metabolic bone diseases.

Source: Wiley

Explore further: Drug treats inherited form of intellectual disability in mice

add to favorites email to friend print save as pdf

Related Stories

Nanoparticles give up forensic secrets

54 minutes ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

Study shows sharks have personalities

1 hour ago

Some sharks are 'gregarious' and have strong social connections, whilst others are more solitary and prefer to remain inconspicuous, according to a new study which is the first to show that the notorious ...

Desktop device to make key gun part goes on sale in US

2 hours ago

The creator of the world's first 3D plastic handgun unveiled Wednesday his latest invention: a pre-programmed milling machine that enables anyone to easily make the core component of a semi-automatic rifle.

Twitter-funded lab to seek social media insights

3 hours ago

A new Twitter-funded research project unveiled Wednesday, with access to every tweet ever sent, will look for patterns and insights from the billions of messages sent on social media.

Recommended for you

DNA signature found in ice storm babies

Sep 29, 2014

The number of days an expectant mother was deprived of electricity during Quebec's Ice Storm (1998) predicts the epigenetic profile of her child, a new study finds.

User comments : 0