Dried mushrooms slow climate warming in Northern forests

Nov 03, 2008

The fight against climate warming has an unexpected ally in mushrooms growing in dry spruce forests covering Alaska, Canada, Scandinavia and other northern regions, a new UC Irvine study finds.

When soil in these forests is warmed, fungi that feed on dead plant material dry out and produce significantly less climate-warming carbon dioxide than fungi in cooler, wetter soil. This came as a surprise to scientists, who expected warmer soil to emit larger amounts of carbon dioxide because extreme cold is believed to slow down the process by which fungi convert soil carbon into carbon dioxide.

Knowing how forests cycle carbon is crucial to accurately predicting global climate warming, which in turn guides public policy to curb greenhouse gas emissions. This is especially important in northern forests, which contain an estimated 30 percent of the Earth's soil carbon, equivalent to the amount of atmospheric carbon.

"We don't get a vicious cycle of warming in dry, boreal forests. Instead, we get the reverse, where warming actually prevents further warming from occurring," said Steven Allison, ecology and evolutionary biology assistant professor and lead author of the study. "The Earth's natural processes could give us some time to implement responsible policies to counteract warming globally."

This study appears online Nov. 3 in the journal Global Change Biology.

Soils in the far north contain a lot of carbon from dead grasses, trees and shrubs. Like humans, fungi and bacteria in soil use plant carbon as a food source and convert it into carbon dioxide.

Allison and his colleague, Kathleen Treseder, sought to find out what happens to carbon dioxide levels when boreal forest soil not containing permafrost is warmed. About one-third of the world's boreal forests do not contain permafrost, which is mostly located in Alaska, Canada, Western Siberia and Northern Europe.

Global warming is expected to hit northern latitudes hardest, raising temperatures between 5 and 7 degrees Celsius by the year 2100.

The scientists conducted their experiment in a spruce forest near Fairbanks, Alaska. They built small greenhouses and identified similar unheated plots nearby to serve as controls. Both plots received equal amounts of water.

In mid-May when growing season began, air and soil temperatures were the same in greenhouses and control plots. When greenhouses were closed, air temperature rose about 5 degrees Celsius, and soil temperature rose about 1 degree.

The scientists took measurements in the greenhouses and unheated plots and found that by growing season's end in mid-August, soil in warmed greenhouses produced about half as much carbon dioxide as soil in cooler control plots.

A soil analysis found that about half as much active fungi were present in experimental greenhouse samples compared with samples from the controls. When fungi dry out, they either die or become inactive and stop producing carbon dioxide, the scientists said.

"It's fortuitous for humans that the fungi are negatively affected by this warming," said Treseder, ecology and evolutionary biology associate professor. "It's not so great for the fungi, but might help offset a little bit of the carbon dioxide we are putting directly into the atmosphere by burning fossil fuels."

Source: University of California - Irvine

Explore further: Rare new species of plant: Stachys caroliniana

add to favorites email to friend print save as pdf

Related Stories

Alaska shows no signs of rising Arctic methane

Nov 17, 2014

Despite large temperature increases in Alaska in recent decades, a new analysis of NASA airborne data finds that methane is not being released from Alaskan soils into the atmosphere at unusually high rates, ...

A thousand years of environmental change in Polynesia

Nov 14, 2014

Environmental change is nothing new in Polynesia. For centuries, the inhabitants of the volcanic, sea-battered islands have been employing a variety of strategies to adapt to their changing landscapes.

Research spawns eco-friendly cement substitute

Nov 13, 2014

When he was a Ph.D. student in the University of Arizona Department of Soil, Water, and Environmental Science, David Stone won a student innovation competition with the invention of an eco-friendly substitute ...

Recommended for you

Rare new species of plant: Stachys caroliniana

Nov 21, 2014

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

Mysterious glowworm found in Peruvian rainforest

Nov 21, 2014

(Phys.org) —Wildlife photographer Jeff Cremer has discovered what appears to be a new type of bioluminescent larvae. He told members of the press recently that he was walking near a camp in the Peruvian ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

barakn
1 / 5 (2) Nov 29, 2008
"Both plots received equal amounts of water." 'Nuff said.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.