Persistent bacterial infection exploits killing machinery of immune cells

Nov 02, 2008

A new study reveals an important and newly discovered pathway used by disease-causing bacteria to evade the host immune system and survive and grow within the very cells meant to destroy them. This discovery may lead to new treatments and vaccines for tuberculosis (TB) and certain other chronic bacterial and parasitic infections.

The research, supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, is the work of the laboratories headed by Peter Murray, Ph.D., at St. Jude Children's Research Hospital in Memphis, Tenn., and Thomas Wynn, Ph.D., of the Laboratory of Parasitic Diseases at NIAID. Their findings appear in the November issue of Nature Immunology.

Clearing the body of disease-causing bacteria is the job of specialized white blood cells called macrophages. The word "macrophage" means "big eater" in Latin and that is just what these cells are--they gobble up cell debris, infected cells and disease-causing bacteria found in the body. To help them digest and destroy what they eat, macrophages make compounds that in most cases kill pathogens. One of these chemicals is the free radical nitric oxide (NO).

However, some harmful bacteria, known as intracellular pathogens, live inside cells and can even survive and replicate within macrophages, somehow inhibiting or escaping killing by NO. One natural NO inhibitor made by macrophages is the enzyme arginase. Arginase steals and degrades the material required to make NO, therefore limiting how much NO is made.

"The bacteria designed to live inside the cell are highly adapted to their environment," says Dr. Murray. "We wanted to determine just how intracellular bacteria were turning on the genes that make arginase, thereby controlling the expression of NO and escaping killing by macrophages."

The research team discovered that intracellular pathogens increase levels of arginase, thereby reducing the amount of NO the macrophages produce, enabling intracellular pathogens to survive. The presence of persistent intracellular bacteria is particularly harmful to people with compromised immune systems, such as people with HIV or cancer, who often contract chronic bacterial and parasitic infections.

To test the significance of arginase production induced by the intracellular bacterium that causes TB, Mycobacterium tuberculosis, the researchers generated mice lacking the arginase gene in their macrophages (arginase knockout mice). After infecting the arginase knockout mice with the TB bacteria, they observed that the mice had fewer bacteria and higher levels of NO in their lungs.

The researchers then infected arginase knockout mice with an intracellular parasite that causes toxoplasmosis, a disease that also is controlled by NO. They observed that mice lacking arginase had higher survival rates than mice that produced arginase.

However, when knockout mice were infected with bacteria that are not killed by NO, the lack of arginase did not affect the macrophages' ability to clear the infection.

"Although NO was named 'molecule of the year' in 1992 by Science Magazine and studied as an important part of the immune response to bacterial infections, arginase, its counterbalance, was widely ignored by the immunology community," comments Dr. Wynn. "This work suggests that targeting arginase may be helpful in treating chronic, intracellular bacterial and parasitic infections."

Drs. Murray and Wynn hope to next determine what other parts of the immune system are affected when arginase is blocked.

Source: National Institute of Allergy and Infectious Diseases

Explore further: 3-D printing offers innovative method to deliver medication

add to favorites email to friend print save as pdf

Related Stories

Study shows troubling rise in use of animals in experiments

2 hours ago

Despite industry claims of reduced animal use as well as federal laws and policies aimed at reducing the use of animals, the number of animals used in leading U.S. laboratories increased a staggering 73 percent from 1997 ...

NY surveying banks on cyber security defenses

5 hours ago

(AP)—New York financial regulators are considering tougher cyber security requirements for banks to mandate more complex computer sign-ins and certifications from the contractors of their cyber defenses, the state's top ...

Life-saving train design is rarely used

5 hours ago

(AP)—Nearly a decade ago, the U.S. secretary of transportation stood at the site of a horrendous commuter train crash near downtown Los Angeles and called for the adoption of a new train car design that ...

Climate change may flatten famed surfing waves

6 hours ago

On a summer day in 1885, three Hawaiian princes surfed at the mouth of the San Lorenzo River on crudely constructed boards made from coastal redwoods, bringing the sport to the North American mainland.

Recommended for you

Mutation may cause early loss of sperm supply

16 minutes ago

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation ...

No more bleeding for 'iron overload' patients?

2 hours ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

3-D printing offers innovative method to deliver medication

7 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.