Trustee makes donation to start new solar energy research center at Rensselaer

Oct 31, 2008

Thomas R. Baruch, a member of the Rensselaer Polytechnic Institute Board of Trustees and alumnus of the Class of 1960, has donated a gift that will help to establish a new center at the Institute devoted to bio-energy research. The new center — the Baruch '60 Center for Biochemical Solar Energy Research — will conduct unprecedented research on biochemical solar technology.

Researchers at the center will work to develop the next generation of solar technology by studying one of the most powerful energy converting machines in world – plants. Researchers will use sophisticated new technologies and techniques to understand the energy converting power of plants to develop new technologies that mimic this extremely efficient natural system.

"We are grateful to have a partner in Tom Baruch who fully understands the vision of The Rensselaer Plan, and the pressing need to pursue visionary and innovative efforts to develop new approaches to energy security around the world," said Rensselaer President Shirley Ann Jackson. "The center will expand the energy research network that Rensselaer is actively building across the Institute, and will offer researchers around the globe fundamental scientific research on the original solar panel – plants – as well as technological solutions to create the super-efficient man-made solar technologies of the future."

"It is my hope that this center will expand on Rensselaer's very strong foundation in energy research and establish Rensselaer and its faculty and students as leaders at the forefront of solar energy research," Baruch said. "The research talent and infrastructure of Rensselaer create the perfect storm of ideas and innovations that I believe will result in the creation of solar technologies with greater efficiency of even the most sophisticated silicon solar panels available on the market today."

The center will include faculty from a variety of disciplines and research backgrounds. In the initial stages, the research will center on molecular chemistry and biochemistry to map out the step-by-step processes that nature's perfect green machines go through to convert solar rays into life-sustaining energy, according to Rensselaer Provost Robert Palazzo. "The research will begin by looking at the processes that plants use to intake and utilize the energy from the sun at such an amazing level of efficiency," he said. "This scientific knowledge could provide other Rensselaer scientists and engineers information to develop new technologies that present an entirely new means of harnessing energy from the sun."

Jonathan Dordick, director of the Center for Biotechnology and Interdisciplinary Studies and a chemical engineer, also envisions strong possibilities for entirely new forms of light-capturing technologies. "Ultimately, biomimetic designs will be integrated with nature's biological machinery to provide scalable, efficient, and broadly applicable systems that convert light into usable and storable energy. This has the potential to revolutionize future energy generation and secure our future as a safe and sustainable society."

K.V. Lakshmi, assistant professor of chemistry and chemical biology, will help lead the effort at the center to capture the extremely complex reactions of photosynthesis in action, which is a vital first step in the research process. One of the recipients of the first-ever federal Department of Energy (DOE) funding for the investigation of biochemical solar power, Lakshmi is working with fellow assistant professors of chemistry and chemical biology James Kempf, an expert in Nuclear Magnetic Resonance (NMR) techniques, and Mark Platt, an expert in plant protein and spectroscopy, to understand how the inner workings of the plant protein complex transforms light into power through photosynthesis. Their colleagues, including assistant professor of chemistry and chemical biology and molecular chemist Peter Dinolfo, as well the faculty in disciplines from biology to chemical engineering will use this foundational knowledge to build synthetic replications of the natural systems to capture and move light energy.

"There is absolutely no doubt that the single most daunting problem that is facing this country and the world is energy independence and security," Lakshmi said. "Solar energy conversion is an important area of research with unbelievable implications for the future. We need transformational science, on the interface of chemistry, biology and physics, to create new technological innovations for solar energy utilization that represent the great convergence of the 21st century."

Source: Rensselaer Polytechnic Institute

Explore further: Low-cost, hydrogen-powered forklifts with rapid refueling, zero emissions coming soon

add to favorites email to friend print save as pdf

Related Stories

Satellite shows high productivity from US corn belt

Mar 31, 2014

Data from satellite sensors show that during the Northern Hemisphere's growing season, the Midwest region of the United States boasts more photosynthetic activity than any other spot on Earth, according to ...

Honda smart home offers vision for zero carbon living

Mar 26, 2014

Honda and the University of California, Davis, today marked the opening of Honda Smart Home US, showcasing technologies that enable zero net energy living and transportation. The home in UC Davis West Village ...

Recommended for you

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

A homemade solar lamp for developing countries

Apr 14, 2014

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

Power arm band for wearables harvests body heat

Apr 12, 2014

(Phys.org) —A group of Korean researchers have turned their focus on supplying a reliable, efficient power source for wearables. Professor Byung Jin Cho of the Korea Advanced Institute of Science and Technology ...

User comments : 0

More news stories

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.

Making 'bucky-balls' in spin-out's sights

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

Gene removal could have implications beyond plant science

(Phys.org) —For thousands of years humans have been tinkering with plant genetics, even when they didn't realize that is what they were doing, in an effort to make stronger, healthier crops that endured climates better, ...