Detecting dirty bomb material with ESA gamma-ray technology

Oct 30, 2008
Detecting dirty bomb material with ESA gamma-ray technology
Russia, Moscow : Stationary customs Yantar system for control over fission and radioactive materials. Credits: AFP

Thanks to ESA and UK technology transfer support, a British company has developed a device based on the gamma-ray detection equipment used in ESA’s Integral astronomy satellite to detect and identify the radioactive material mixed with conventional explosives in ‘dirty bombs’.

ESA has supported the development of technology for gamma-ray astronomy for more than 40 years. Integral, ESA’s International Gamma-Ray Astrophysics Laboratory launched in 2002, is now detecting some of the most energetic radiation to be found in space, such as that from gamma-ray bursts, supernovas and black holes in the Milky Way and distant galaxies at the edge of the observable Universe.

This same technology is now being used by the company to develop and commercialise radiation detection and identification technology. The company was formed in 2002 and with support from the UK technology transfer initiative and ESA’s Technology Transfer Programme Office it was put in contact with a world-leading provider of explosives trace and X-ray detection systems.

Most radioactive sources produce gamma rays of various energies and intensities. By detecting and analysing them, a gamma-energy spectrum can be produced – a kind of radiation fingerprint – to identify the substance and the quantity.

Portable detection device

In 2006, the companies’ partnership led to a contract from the Domestic Nuclear Detection Office of the US Department of Homeland Security for a next-generation radiation gamma-ray detection and identification system. The contract has a potential total value, including options, of US$222 million (€140 million).

The detection of illicit traffic in radioactive materials that could be used to make dirty bombs is a high priority for national security in the US.

Threatening nuclear materials must be identified from a range of natural radioactive materials such as clay tiles, ceramics and even bananas, as well as from a range of legally transported radioactive materials such as medical isotopes.

Effective screening devices are required for personnel and freight at ports and borders. The detection and identification of dangerous radioactive material has to be reliable and quick so as not to disrupt the normal flow of commerce.

The companies are developing a handheld and backpack Human Portable Radiation Detection System, tailored to meet these criteria. The device features space radiation detection hardware and signal processing software for use by emergency services, border patrol agents, customs and coast guard officers, and other law enforcement personnel.

The detectors can identify and determine the location of incoming radiation and also reliably discriminate between normally occurring radioactive material and potential threats.

Provided by ESA

Explore further: Making LED-illuminated advertisements light and flexible

Related Stories

Dwindling bird populations in Fukushima

Apr 15, 2015

This is the time of year when birds come out and really spread their wings, but since a disastrous day just before spring's arrival four years ago, Japan's Fukushima province has not been friendly to the ...

Getting a critical edge on plutonium identification

Mar 24, 2015

A collaboration between NIST scientists and colleagues at Los Alamos National Laboratory (LANL) has resulted in a new kind of sensor that can be used to investigate the telltale isotopic composition of plutonium ...

Recommended for you

Making LED-illuminated advertisements light and flexible

22 hours ago

VTT is involved in a European project, developing novel LED advertising displays, which combine thin, lightweight and bendable structures with advanced optical quality. The project will implement, for example, a LED display ...

Detecting human life with remote technology

Apr 27, 2015

Flinders engineering students Laith Al-Shimaysawee and Ali Al-Dabbagh have developed ground-breaking new technology for detecting human life using remote cameras.

Team develops faster, higher quality 3-D camera

Apr 24, 2015

When Microsoft released the Kinect for Xbox in November 2010, it transformed the video game industry. The most inexpensive 3-D camera to date, the Kinect bypassed the need for joysticks and controllers by ...

Researchers finding applications for tough spinel ceramic

Apr 24, 2015

Imagine a glass window that's tough like armor, a camera lens that doesn't get scratched in a sand storm, or a smart phone that doesn't break when dropped. Except it's not glass, it's a special ceramic called ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
1 / 5 (2) Oct 30, 2008
how do they do it?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.