Transplantation: 'molecular miscegenation' blurs the boundary between self and non-self

Oct 30, 2008

A new discovery by London biologists may yield new ways of handling the problem of transplant rejection. In a research article published in the November 2008 print issue of The FASEB Journal, the scientists confirm the two-way transfer of a molecule (called "MHC") that instructs the immune system to tell "self" from "non-self." By disrupting the transfer of this molecule, newly transplanted organs should become "invisible" to the host's immune system.

Such an advance would be considered a major medical breakthrough because current methods of preventing organ rejection involve weakening the host's immune system, which can lead to life-threatening infections.

"The medical potential of this finding is enormous," says Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "Understanding molecular miscegenation should not only make transplantation more widespread and effective, but also shed light on how microbes disrupt our body's immune apparatus for distinguishing self from non-self."

The researchers made this discovery when they transplanted kidneys or hearts from one set of mice into another, with each set of mice having a different version of the molecule being studied. The researchers then conducted tests to see if the molecules were transferred. In the recipient mice, the donated kidneys or hearts and the host tissue expressed both types of molecules. This is the first time that this transfer has been shown to happen in a living system.

Wilson Wong, senior researcher on the study from King's College London, states that although the findings are tantalizing, they represent only a very primitive understanding of this phenomenon. Nevertheless, he hopes "that this study will lead to a better understanding of the immune system to benefit the development of new therapies in areas related to transplantation."

Link: www.fasebj.org

Source: Federation of American Societies for Experimental Biology

Explore further: Early detection and transplantation provide best outcomes for 'bubble boy' disease

add to favorites email to friend print save as pdf

Related Stories

Synthetic gene circuits pump up cell signals

Apr 08, 2014

(Phys.org) —Synthetic genetic circuitry created by researchers at Rice University is helping them see, for the first time, how to regulate cell mechanisms that degrade the misfolded proteins implicated ...

Puzzling question in bacterial immune system answered

Jan 29, 2014

(Phys.org) —A central question has been answered regarding a protein that plays an essential role in the bacterial immune system and is fast becoming a valuable tool for genetic engineering. A team of researchers ...

When germs attack: A lens into the molecular dance

Jan 07, 2014

Researchers at Johns Hopkins have zoomed in on what is going on at the molecular level when the body recognizes and defends against an attack of pathogens, and the findings, they say, could influence how ...

Recommended for you

Breakthrough in understanding of important blood protein

7 hours ago

The human body contains a unique protein that has the unusual property of destroying itself after a few hours of existence - it must therefore be continually recreated and is no stable protein. The protein, ...

User comments : 0