Transplantation: 'molecular miscegenation' blurs the boundary between self and non-self

Oct 30, 2008

A new discovery by London biologists may yield new ways of handling the problem of transplant rejection. In a research article published in the November 2008 print issue of The FASEB Journal, the scientists confirm the two-way transfer of a molecule (called "MHC") that instructs the immune system to tell "self" from "non-self." By disrupting the transfer of this molecule, newly transplanted organs should become "invisible" to the host's immune system.

Such an advance would be considered a major medical breakthrough because current methods of preventing organ rejection involve weakening the host's immune system, which can lead to life-threatening infections.

"The medical potential of this finding is enormous," says Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "Understanding molecular miscegenation should not only make transplantation more widespread and effective, but also shed light on how microbes disrupt our body's immune apparatus for distinguishing self from non-self."

The researchers made this discovery when they transplanted kidneys or hearts from one set of mice into another, with each set of mice having a different version of the molecule being studied. The researchers then conducted tests to see if the molecules were transferred. In the recipient mice, the donated kidneys or hearts and the host tissue expressed both types of molecules. This is the first time that this transfer has been shown to happen in a living system.

Wilson Wong, senior researcher on the study from King's College London, states that although the findings are tantalizing, they represent only a very primitive understanding of this phenomenon. Nevertheless, he hopes "that this study will lead to a better understanding of the immune system to benefit the development of new therapies in areas related to transplantation."

Link: www.fasebj.org

Source: Federation of American Societies for Experimental Biology

Explore further: Growing a blood vessel in a week

add to favorites email to friend print save as pdf

Related Stories

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

Designer viruses could be the new antibiotics

Oct 15, 2014

Bacterial infections remain a major threat to human and animal health. Worse still, the catalogue of useful antibiotics is shrinking as pathogens build up resistance to these drugs. There are few promising ...

Stem cells use 'first aid kits' to repair damage

Sep 18, 2014

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments : 0