Virtual screening leads to real progress in drug design

Oct 28, 2008
Model of the REL1 enzyme (in pink and purple ribbon) interacting with an RNA substrate (gold ribbon). An ATP molecule, which is necessary for the enzyme’s activity, is bound to REL1. Credit: Rommie Amaro and J. Andrew McCammon

Around 150,000 people per year get African sleeping sickness, a disease spread by the biting tsetse fly and caused by the parasite Trypanosoma brucei. Unless treated, the illness is invariably fatal. And the only available medicines are either difficult to administer, expensive, or toxic. The widely used drug melarsoprol, for example, is essentially arsenic dissolved in antifreeze.

Only one new drug to treat African sleeping sickness has appeared in the past 50 years. "The biomedical significance of new drugs to treat trypanosomal diseases, which occur mainly in developing countries, would be huge," says Peter Preusch, of the National Institute of General Medical Sciences (NIGMS).

A team led by computational biologist J. Andrew McCammon of the University of California, San Diego, may offer a solution. The researchers used a unique computational approach to identify five compounds that could lead to new drugs to combat the disease. The compounds block the activity of the trypanosomal REL1 enzyme, which the parasite needs to survive.

REL1 has a unique role in the trypanosome's mitochondria, the organelles that provide the parasite with energy. The enzyme joins mitochondrial messenger RNA fragments, making them whole and functional. These messages are the blueprints for making the proteins that power the mitochondria. Without REL1, some of these mitochondrial proteins are missing, which slows energy production and kills the parasite.

The results appear online this week in the Proceedings of the National Academy of Sciences.

The approach developed by McCammon's group uses a combination of several computational tools. It starts with a detailed model of the biological target—REL1 in this case—derived from X-ray crystallography. It then uses biophysical principles to find all the ways in which the protein can twist, turn, and wiggle.

"We know that proteins aren't static," said Rommie Amaro, Ph.D., the lead author of the study. "They're dynamic moving machines. The unique thing about this approach is that it allows full protein flexibility."

But predicting the countless shapes that a large, complex molecule like a protein can adopt requires enormous computer power. A REL1 analysis done on a regular desktop could take years while those on supercomputers take a few days. The computers used in this study, explains Amaro, are among the most powerful in the country.

Once they know the dynamics, the researchers carry out a virtual screen of hundreds of compounds, testing their ability to stick to a key part of REL1. Compounds that stick tightly have a good chance of inhibiting the enzyme's activity and killing the parasite.

"It's rather like a child's puzzle where one must put the cow-shaped piece into the cow shaped hole in the barnyard scene," explains Preusch, who oversees computational biology grants at NIGMS, which partially funded the work. But like real cows, he added, molecules are in constant motion. "McCammon has developed methods that take these motions into account, as well as the changes in a protein's shape that can occur upon binding."

The virtual screen predicted that about a dozen compounds would bind tightly to REL1's hot spot. Knowing that a slightly different version of one of these might stick even more tightly, the researchers searched a large database of existing compounds for structurally similar molecules.

When they tested their best candidates experimentally, five inhibited REL1. These five molecules, which block the activity of a crucial trypanosomal enzyme, can now serve as the basis for future drug design and discovery efforts.

McCammon's computational method has already proven its utility for designing other important drugs. His group used it to develop a model for a new class of drugs to treat AIDS that led to raltegravir, which the Food and Drug Administration approved in 2007. McCammon's team also used the method to identify promising drug candidates for treating H5N1 avian flu.

McCammon's team is now focusing on designing even better inhibitors of trypanosomal REL1. The goal is to tweak the inhibitors' structures, making them bind even more tightly to REL1 and less tightly to related human enzymes. Binding to human enzymes makes an inhibitor less attractive as a drug candidate because the interactions could cause undesired side effects.

This work, says McCammon, "tells a story that may be of wide interest." The computational approach not only could lead to improved drugs for treating African sleeping sickness, but it could be used to develop compounds for use against other illnesses for which we need better medications.

Source: NIH/National Institute of General Medical Sciences

Explore further: Scientists investigate use of cognitive computing-based visual analytics for skin cancer image analysis

add to favorites email to friend print save as pdf

Related Stories

Microbial 'signature' for sexual crimes

1 hour ago

Bacterial communities living on an individual's pubic hairs could be used as a microbial 'signature' to trace their involvement in sexual assault cases, according to a study published in the open access journal Investigative Ge ...

Brazil: Google fined in Petrobras probe

2 hours ago

A Brazilian court says it has fined Google around $200,000 for refusing to intercept emails needed in a corruption investigation at state-run oil company Petrobras.

Atari's 'E.T.' game joins Smithsonian collection

3 hours ago

One of the "E.T." Atari game cartridges unearthed this year from a heap of garbage buried deep in the New Mexico desert has been added to the video game history collection at the Smithsonian.

Sony threatens to sue for publishing stolen emails

3 hours ago

A lawyer representing Sony Pictures Entertainment is warning news organizations not to publish details of company files leaked by hackers in one of the largest digital breaches ever against an American company.

Microsoft builds support over Ireland email case

3 hours ago

Microsoft said Monday it had secured broad support from a coalition of influential technology and media firms as it seeks to challenge a US ruling ordering it to hand over emails stored on a server in Ireland.

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

18 hours ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

23 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.