Scientists identify cell changes leading to impaired 'artificial kidney' function

Oct 28, 2008

Molecular targets identified by a Spanish research team may hold the key to freedom for some sufferers of kidney disease. A new study published in Disease Models & Mechanisms (DMM), dmm.biologists.org, reveals the cellular signals which cause one treatment for kidney failure to lose its usefulness over time.

One of the most devastating aspects of kidney failure is the strict, time-consuming treatment regimen. Normally, healthy kidneys take on the role of filtering and cleaning the blood. Therefore patients with diseased kidneys traditionally need to attend a dialysis clinic to have their blood cleaned through a special filter. This treatment requires three regular clinic visits per week, with each session lasting three to five hours.

An alternative to this treatment involves creation of an "artificial kidney" in a process known as peritoneal dialysis (PD). Fluid is inserted into the abdominal cavity, and the blood vessel-rich cavity lining, the peritoneum, acts as a filter for the blood. Exchanges of dialysis fluid can take place at home, thus freeing patients of a rigid schedule of clinic visits.

However, the filtration ability of the peritoneum can lose efficiency over time, requiring patients to discontinue PD. In order to understand this change in the peritoneum, scientists Raffaele Strippoli, Miguel del Pozo and colleagues examined the dialysis fluid from PD patients, and identified molecular signals that cause abnormal changes in the peritoneum. They also found that pharmacologically disrupting these signals causes these abnormal cells to revert back to their original state, as they normally existed in the abdominal cavity lining.

These findings support further research on maintaining the effectiveness of PD, and indicate that perhaps even former PD patients could once again have an option to use PD rather than traditional hemodialysis. Additionally, the cellular changes studied in the peritoneum are similar to cell transformations in tumor formation and inflammation. Their findings may aid in greater understanding of cell change in these situations, as well.

Source: The Company of Biologists

Explore further: Owls and lizards lend their ears for human hearing research

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Owls and lizards lend their ears for human hearing research

3 hours ago

Lizards and owls are some of the animal species that can help us to better understand hearing loss in humans, according to new research out of York University's Department of Physics & Astronomy in the Faculty of Science.

Team finds key to tuberculosis resistance

8 hours ago

The cascade of events leading to bacterial infection and the immune response is mostly understood. However, the molecular mechanisms underlying the immune response to the bacteria that causes tuberculosis ...

Mutation may cause early loss of sperm supply

9 hours ago

Brown University biologists have determined how the loss of a gene in male mice results in the premature exhaustion of their fertility. Their fundamental new insights into the complex process of sperm generation ...

No more bleeding for 'iron overload' patients?

11 hours ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.