Scientists identify single microRNA that controls how heart chambers form

Oct 27, 2008

Scientists at the Gladstone Institute of Cardiovascular Disease (GICD) and the University of California San Francisco (UCSF) have identified a genetic factor critical to the formation of chambers in the developing heart. The discovery of the role of a microRNA called miR-138, could offer strategies for the treatment of congenital heart defects.

The heart is one of the first and most important organs to develop. In fact, embryos cannot survive long with a functioning heart. In vertebrates (animals with backbones), special cells form a heart tube; that tube loops back on itself to form the atrium and ventricle and the canal and valve that separates them. This requires a complicated sequence of genes turning on and off. MicroRNAs are very small RNAs of 20 to 25 nucleotides that regulate numerous gene functions. Approximately 650 human miRNAs are known, but only a few have yet been studied to determine what they actually do in a cell.

Researchers, led by Sarah Morton, an MD/PhD student at UCSF and GICD Director Deepak Srivastava MD, examined zebrafish, which are an ideal model system for understanding genetic functions. Zebrafish are small, reproduce fast, and are essentially transparent so that that events of heart formation can be studied while they are still alive. Yet many of their systems are quite similar to those of humans. For example, miR-138 is exactly the same in zebrafish and humans.

"What's interesting is that a single microRNA is responsible for setting up the distinct patterning of a developing heart into separate chambers," said Dr. Srivastava, senior author of the study. "Since many congenital heart defects involve abnormalities in the formation of the chambers, this is important information in finding ways of treating or avoiding those defects."

The GICD scientists reported in today's issue of the Proceedings of the National Academy of Sciences USA, that miR-138 is present in the zebrafish heart at specific times and in specific places in the developing heart. Furthermore, they showed that it is required to insure that the cardiac chambers develop properly. When the scientists used genetic engineering techniques to eliminate miR-138, cardiac function was disrupted, and the ventricles did not develop correctly, with the muscle precursor cells failing to mature properly.

"The miR-138 function was required during a discrete developmental window that occurred 24-34 hours after fertilization," said Sarah Morton. The team also showed that the miRNA controlled development by regulating numerous factors that function jointly to define the chambers, including a key enzyme that makes retinoic acid.

Source: Gladstone Institutes

Explore further: New research finds pathogenic connection between autoimmune disorders and cancer

add to favorites email to friend print save as pdf

Related Stories

Fox bid for Time Warner sparks content merger race

6 hours ago

Even though Rupert Murdoch's $76 billion bid for rival media giant Time Warner Inc. has been rejected, that doesn't mean how you watch TV shows and movies will stop changing any time soon.

BlackBerry stock falls after Apple-IBM deal

7 hours ago

Blackberry stock fell sharply Wednesday, one day after the announcement of a landmark deal between rivals Apple and IBM to offer custom-tailored apps for businesses.

Comet ISON's dramatic final hours

7 hours ago

(Phys.org) —A new analysis of data from the ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft has revealed that comet 2012/S1 (ISON) stopped producing dust and gas shortly before it raced past ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
not rated yet Oct 28, 2008
this is the beginning of a long line of research to come on how the cellular source programs the structural building of biomaterials, human body materials, and more specifically even more complex body materials with intricate physical architectures known as organs.

as far as structural integrity , complexity, and viability for pnematic functions, the human heart is up there with most animal hearts and is particularly suited to from a ground up level because we may learn things seemingly more applicable to human heart medical research ( top down heart research). however, i would personally think that science, and quite possibly medicine as well , will be better served by studying the zebra fish and other simpler hearts with respect to this research.

I guess i believe that this cell source code archetectural research must first be deciphered and reduced to a point where we can use it to build things much more simple than a heart before we go on to that challenge. for example, bone or even just capillary , or even just smooth muscle or basic non-human cardiac muscle

perhaps its not an either or situation but the ultimate implications of this research are far far away, regarding the human heart. however, i think there may even be some more exciting applications beyond life/health extension such as building new biological organisms from scratch, or building biodegradeable industrial materials with low energy bio-processes.

imagine building a house made of corral reef material from the ground up in 3 months using a mere do it yourself planting system.