Newly-discovered mechanism can explain the Beckwith-Wiedemann syndrome

Oct 24, 2008

Researchers from Uppsala University have discovered a mechanism that silences several genes in a chromosome domain. The findings, published in today's on-line issue of Molecular Cell, have implications in understanding the human disorder Beckwith-Wiedemann syndrome.

In mammals the cells contain two copies of each chromosome, one inherited from the mother and one from the father. The genes on the chromosomes can either be active or inactive. If a gene is active on the maternal chromosome, the corresponding gene is usually active also on paternal chromosome.

However, in some domains of the chromosome the activity is shut down on one of the chromosomes but not on the other. The genes in these domains cannot be activated the normal way but are completely silenced. The present study shows for the first time how this silencing of several genes on a chromosome is accomplished.

The research group, led by Chandrasekhar Kanduri, has studied a domain with several silenced genes on chromosome 7 in the mouse. The corresponding domain with silenced genes is located on the human chromosome 11. When part of this domain is transcribed a long RNA molecule, Kcnq1ot1-RNA, is formed. This RNA does not give rise to any protein, instead it mediates the silencing of eight to ten genes in a much larger area on the chromosome. Based on their findings the researchers have suggested a model for how this is accomplished. The Kcnq1ot1-RNA binds to the DNA in the domain and recruits specific enzymes that chemically modify DNA-binding proteins. This modification makes the DNA inaccessible for transcription and thereby the genes cannot be activated. In addition, the Kcnq1ot1-RNA targets the silenced domain to a specific area in the cell nucleus. There it is protected during cell division and the genes will stay silenced also in the daughter cells.

– We show for the first time how a long RNA molecule can establish and maintain silencing of multiple genes in a large domain on the chromosome, says Chandrasekhar Kanduri. The popular belief is that it is only a gene located in the same area as where the long RNA molecule is transcribed from that can be silenced.

This mechanism is important for understanding the genetic disorder Beckwith-Wiedemann Syndrome. In this condition silencing of the chromosome 11 domain does not function properly and both copies of the genes in the domain become inactive, instead of just one. Less protein is produced from the genes, leading to the excess growth characteristics associated with the syndrome: enlargement of organs in the foetus and an increased risk for tumours in the affected organs.

Source: Uppsala University

Explore further: Steadily rising increases in mitochondrial DNA mutations cause abrupt shifts in disease

add to favorites email to friend print save as pdf

Related Stories

Special chromosomal structures control key genes

Oct 09, 2014

Within almost every human cell is a nucleus six microns in diameter—about one 300th of a human hair's width—that is filled with roughly three meters of DNA. As the instructions for all cell processes, the DNA must be ...

New functions for chromatin remodelers

Aug 28, 2014

Large molecular motors consisting of up to a dozen different proteins regulate access to the genome, which is essential for the transcription of genes and for the repair of DNA damage. Susan Gasser and her ...

The energetic origins of life

Jun 12, 2014

(Phys.org) —Imagination is perhaps the most powerful tool we have for creating the future. The same might be said when it comes to creating the past, especially as it pertains to origin of life. Under what ...

Calico cats inspire X chromosome research

Feb 18, 2014

Calico cats, renowned and beloved for their funky orange and black patchwork or "tortoiseshell" fur, can thank X chromosome inactivation or "silencing" for their unique look.

Cell nuclei harbor factories that transcribe genes

Sep 27, 2013

Our genetic heritage is contained—and protected—in the nucleus of the cells that compose us. Copies of the DNA exit the nucleus to be read and translated into proteins in the cell cytoplasm. The transit between the nucleus ...

Recommended for you

Cause of ageing remains elusive

12 hours ago

A report by Chinese researchers in the journal Nature a few months ago was a small sensation: they appeared to have found the cause for why organisms age. An international team of scientists, headed by the ...

Newly discovered bacterial defence mechanism in the lungs

13 hours ago

A new study from Karolinska Institutet presents a previously unknown immunological mechanism that protects us against bacterial infections in the lungs. The study is being published in the American Journal of Respiratory an ...

User comments : 0