Study finds genomic changes in the brains of people who commit suicide

Oct 23, 2008

Are genes destiny? Alternatively, are we simply the products of our environment? There is a growing sense that neither of these two possibilities fully captures the essence of the risk for psychiatric disorders. New light is being shed on the complex interaction of genetic and environmental factors as the result of growth in the field of epigenetics. While genetics is the study of how variation in gene sequence or "genotype" influences traits or "phenotypes," epigenetics (epi- from the Greek meaning outside or above) is the study of heritable changes in gene function that may occur without modifying the gene sequence, often as a consequence of environmental exposures.

There are an increasing variety of epigenetic mechanisms that have been described, including the regulation of gene function via the methylation or demethylation of DNA. The study by Drs. Michael Poulter and Hymie Anisman and colleagues in the October 15th issue of Biological Psychiatry illustrates one exciting new example in this area of research, an epigenetic study of depression/suicide. The researchers compared the brain tissues of those who had major depressive disorder and committed suicide to those from a control group who died suddenly, from heart attacks and other causes.

They found the genome in people who have committed suicide as a result of major depression was being chemically modified by a process that is normally involved in regulating cell development. As Poulter explains, "We have about 40,000 genes in every cell and the only reason a skin cell becomes a skin cell as opposed to a heart cell is because only a fraction of the genes are being expressed, and the other genes not being expressed are shut down by this genetic process of DNA methylation."

The rate of methylation in the suicide brains was found to be nearly ten times that of the control group, and the gene being shut down was a neurotransmitter receptor that plays a major role in regulating behavior. John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments, "This is exciting new evidence that genetic and environmental factors may interact to produce specific and long-lasting modifications in brain circuits. Further, these modifications may shape the course of one's life in extremely important ways, including increasing the risk for major depressive disorder and perhaps suicide."

"The whole idea that the genome is so malleable in the brain is surprising, because brain cells don't divide. You get dealt your neurons at the start of life, so the idea that there are still epigenetic mechanisms going on is pretty unusual," adds Poulter. The authors note that these observations open an entirely new avenue of research and potential therapeutic interventions.

Source: Elsevier

Explore further: Analysis of spider venom reveals seven promising compounds with potential to relieve chronic pain

add to favorites email to friend print save as pdf

Related Stories

A taxi ride to starch granules

7 hours ago

Plant scientists at ETH have discovered a specific protein that significantly influences the formation of starch in plant cells. The findings may be useful in the food and packaging industries.

Skeleton of cells controls cell multiplication

6 hours ago

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

Image: Human endothelial cells experiment bound for ISS

Feb 25, 2015

Components of human endothelial cells stained for identification. In red is the 'actin' protein that allows the cells to move, adhere, divide and react to stimuli. In blue are the cell nuclei containing DNA.

Epigenetic 'switch' regulates RNA-protein interactions

Feb 25, 2015

Chemical changes - also known as epigenetic modifications - to messenger RNA (mRNA) are thought to play an important role in gene expression, and have recently been found to affect biological processes such as circadian clock ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

CWFlink
not rated yet Oct 27, 2008
"You get dealt your neurons at the start of life..." Augh!

I know this was accepted belief when I was in High School, but I'm pretty sure it has been proven false.

If NOT, explain why in heck anybody is doing stem cell research attempting to "regrow severed nerves" ????

I'm pretty sure that nerves do not regenerate anywhere near as fast as other cells, but it is illogical to assume NO regeneration at all.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.