Been there, done that: Brain mechanism predicts ability to generalize

Oct 22, 2008

A new study reveals how the brain can connect discrete but overlapping experiences to provide a rich integrated history that extends far beyond individually experienced events and may help to direct future choices. The research, published by Cell Press in the October 23rd issue of the journal Neuron, also explains why some people are good at generalizing from past experience, while others are not.

Decisions are often guided by drawing on past experiences, perhaps by generalizing across discrete events that overlap in content. However, how such experiences are integrated into a unified representation is not clear, and fundamental questions remain regarding potential underlying brain mechanisms. It is likely that such mechanisms involve the hippocampus, a brain structure closely linked with learning and memory. The midbrain may also play a role, as its projections modulate activity in the hippocampus, and activity in both regions has been shown to facilitate encoding of individual episodes.

Dr. Daphna Shohamy from the Department of Psychology at Columbia University was interested in examining how past experiences might be integrated within the brain to create generalizations that guide future decisions. "We hypothesized that generalization stems from integrative encoding that occurs while experiencing events that partially overlap with previously encoded events and that such integrative encoding depends on both the hippocampus and midbrain dopamine regions. Further, we anticipated that greater hippocampal-midbrain engagement during integrative encoding enables rapid behavioral generalization in the future," offers Dr. Shohamy.

Dr. Shohamy and her collaborator, Dr. Anthony Wagner from the Department of Psychology at Stanford University, used functional magnetic resonance imaging to study participants engaged in an associative learning and generalization task. They found that activity in the hippocampus and midbrain during learning predicted generalization and observed a cooperative interaction between the hippocampus and the midbrain during integrative encoding.

"By forming a thread that connects otherwise separate experiences, integrative encoding permits organisms to generalize across multiple past experience to guide choices in the present," explains Dr. Shohamy. "In people who generalize successfully, the brain is constantly building links across separate events, creating an integrated memory of life's episodes. For others, although the brain may accurately remember each past event, this integration does not occur, so that when confronted with a new situation, they are unable to flexibly apply what they learned in the past."

Source: Cell Press

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

Light field microscopy for whole brain activity maps

Jan 29, 2014

(Phys.org) —Advances in light-sheet microscopy have led to impressive images and videos of the brain in action. With this technique, a plane of light is scanned through the sample to excite fluorescent ...

Scientists shed some light on biological "dark matter"

Jan 20, 2014

Biologists have studied the functionality of a poorly understood category of genes, which produce long non-coding RNA molecules rather than proteins. Some of these genes have been conserved throughout evolution, ...

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0