A potential new way to make a good anti-leukemia drug even better

Oct 20, 2008

A recently identified cancer-causing protein makes the anti-leukemia drug imatinib, less effective. By blocking the protein, an international team of researchers was able to slow the spread of leukemia cells in culture. The study, which will appear online on October 20 in the Journal of Experimental Medicine, suggests that the most effective treatment for leukemia may rely on a combination of targeted drugs, rather than a single miracle drug.

Imatinib is currently the most popular therapy for chronic myeloid leukemia (CML). CML is a type of blood cancer that is most common among middle-aged adults and accounts for 15-20% of all cases of adult leukemia in the western world. Accumulation of cancer cells in the patient's blood causes infections, anemia, and other potentially life-threatening complications.

CML is associated with the abnormal fusion of a portion of chromosome 21 with a cell growth-promoting enzyme called ABL, which makes the enzyme perpetually active. Imatinib slows down the spread of cancer by blocking the enzyme's activity. But the drug doesn't work in everyone and resistance often develops, most likely because the drug only targets mature cells, leaving self-renewing cancer stem cells behind.

Now, Xiaoyan Jiang and a team of researchers from the British Columbia Cancer Agency in Vancouver and other institutions may have discovered what protects the stem cells from imatinib. The team found that a protein called AHI-1, which has been found in leukemia cells in the past, is highly expressed in CML stem cells. When Zhou and colleagues blocked AHI-1 in cancer cells from imatinib-resistant CML patients, they restored the ability of the drug to kill the cells. The next step, says Jiang is finding a drug that blocks AHI-1, which could potentially be given in combination with imatinib in the future.

Source: Rockefeller University

Explore further: Recombinant peptide for transplantation of pancreatic islets in mice models of diabetes

add to favorites email to friend print save as pdf

Related Stories

Nano packages for anti-cancer drug delivery

Mar 18, 2015

Cancer stem cells are resistant to chemotherapy and consequently tend to remain in the body even after a course of treatment has finished, where they can often trigger cancer recurrence or metastasis. A new ...

New nanodevice defeats drug resistance

Mar 02, 2015

Chemotherapy often shrinks tumors at first, but as cancer cells become resistant to drug treatment, tumors can grow back. A new nanodevice developed by MIT researchers can help overcome that by first blocking ...

Ultra-small block 'M' illustrates big ideas in drug delivery

Feb 26, 2015

By making what might be the world's smallest three-dimensional unofficial Block "M," University of Michigan researchers have demonstrated a nanoparticle manufacturing process capable of producing multilayered, precise shapes.

Recommended for you

Novel nanoparticle therapy promotes wound healing

Mar 26, 2015

An experimental therapy developed by researchers at Albert Einstein College of Medicine of Yeshiva University cut in half the time it takes to heal wounds compared to no treatment at all. Details of the therapy, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.