Samsung Demonstrates First Color Carbon Nanotube-Based Electrophoretic Display

Oct 16, 2008

Unidym, Inc., a majority-owned subsidiary of Arrowhead Research Corporation, announced today that Samsung Electronics is demonstrating the world’s first carbon nanotube-based color active matrix electrophoretic display (EPD) e-paper at the International Meeting on Information Display (iMiD) at KINTEX, Ilsan, Korea from October 13th through October 17th.

The new color e-paper device is a 14.3” format display and is the result of an ongoing joint development program between Samsung Electronics Co., Ltd. and Unidym. The e-paper device uses a carbon nanotube (CNT) transparent electrode developed by Unidym.

“Our ongoing successful collaboration with Samsung Electronics has delivered yet another world’s first achievement this year,” said Arthur L. Swift, Unidym’s president and CEO. “In May of this year Samsung demonstrated the world’s first 2.3 inch black and white active matrix EPD made with carbon nanotubes, and now they have demonstrated the first color large scale EPD e-paper device, in an A4 format."

“This impressive accomplishment has been enabled by our continued improvement in important properties of our CNT films,” said Dr Paul Drzaic, CTO of Unidym. “To serve the various needs of the electronic display industry, our CNT materials need to demonstrate a number of key attributes: conductivity comparable to the incumbent ITO technology, uniformity over large areas in films, and compatibility with different display technologies and fabrication processes.”

EPD’s offer inherent advantages over traditional flat panel displays due to their low power consumption and bright light readability, making them well suited for handheld and mobile applications. Since they can be produced on thin, flexible substrates, EPD’s also are ideally suited for use in e-paper applications. Unlike conventional flat panel displays, EPD’s rely on reflected light, and can retain text or images without constant refreshing, thereby dramatically reducing power consumption.

Provided by Unidym

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

Creative activities outside work can improve job performance

1 hour ago

Employees who pursue creative activities outside of work may find that these activities boost their performance on the job, according to a new study by San Francisco State University organizational psychologist Kevin Eschleman ...

Simplicity is key to co-operative robots

2 hours ago

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Freight train industry to miss safety deadline

3 hours ago

The U.S. freight railroad industry says only one-fifth of its track will be equipped with mandatory safety technology to prevent most collisions and derailments by the deadline set by Congress.

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Innovative strategy to facilitate organ repair

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...