Ghostly glow reveals galaxy clusters in collision

Oct 15, 2008
Superimposed false-color images of the galaxy cluster A521. The blue color represents hot gas typical of many galaxy clusters detected by the Chandra X-ray Observatory. The shape of the X-ray emission indicates that the cluster has undergone a recent collision or "merger event" that could generate turbulent waves. The red represents radio emission at 125 cm wavelength. The bright radio source on the lower left periphery of the X-ray gas is a separate source. The region of radio emission generated by turbulent waves is located at the center of the cluster, where the colors overlap. Credit: Radio (NCRA/GMRT/INAF/G.Brunetti et al.); X-ray (NASA/CXC/INAF/S.Giacintucci et al.)

A team of scientists, including astronomers from the Naval Research Laboratory (NRL), have detected long wavelength radio emission from a colliding, massive galaxy cluster which, surprisingly, is not detected at the shorter wavelengths typically seen in these objects.

The discovery implies that existing radio telescopes have missed a large population of these colliding objects. It also provides an important confirmation of the theoretical prediction that colliding galaxy clusters accelerate electrons and other particles to very high energies through the process of turbulent waves. The team revealed their findings in the October 16, 2008 edition of Nature.

This new population of objects is most easily detected at long wavelengths. Professor Greg Taylor of the University of New Mexico and scientific director of the Long Wavelength Array (LWA) points out, "This result is just the tip of the iceberg. When an emerging suite of much more powerful low frequency telescopes, including the LWA in New Mexico, turn their views to the cosmos, the sky will 'light up' with hundreds or even thousands of colliding galaxy clusters." NRL has played a key role in promoting the development of this generation of new instruments and is currently involved with the development of the LWA. NRL radio astronomer and LWA Project Scientist Namir Kassim says "Our discovery of a previously hidden class of low frequency cluster-radio sources is particularly important since the study of galaxy clusters was a primary motivation for development of the LWA."

The discovery of the emission in the galaxy cluster Abell 521 (or A521 for short) was made using the Giant Metrewave Radiotelescope (GMRT) in India, and its long wavelength nature was confirmed by the National Science Foundation's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. The attached image shows the radio emission at a wavelength of 125cm in red superimposed on a blue image made from data taken by the Chandra X-ray Observatory.

The X-ray emission comes from hot thermal gas, a well-known sign-post of massive galaxy clusters. Furthermore, its elongated shape indicates that the cluster has undergone a recent violent collision or "merger event" in which another group or cluster of galaxies was swallowed up by the gravitational potential of the main cluster. Interferometrics Inc. and NRL scientist Tracy Clarke, who is also the LWA System Scientist, notes "In addition to teaching us about the nature of Dark Matter, merging clusters are also important in studies of the mysterious nature of Dark Energy. Understanding these two strange components of the Universe will help us understand its ultimate destiny."

In the radio image there is a strong, oblong source of emission located on the lower left periphery of the X-ray gas detected by Chandra; this is a separate source. In the center of the cluster, within the region indicated by a dashed circle, there is radio emission which changes significantly with wavelength. At the longest wavelength (125 cm, shown) it is clearly detected, but at a wavelength of 49 cm it is much fainter, and it is almost entirely gone at 21 cm wavelength. This multi-wavelength picture of the diffuse emission is in good agreement with theoretical predictions for particle acceleration by turbulent waves generated by a violent collision.

In a broader astrophysical context, galaxy clusters are the largest gravitationally bound systems in the Universe and their collisions are the most energetic events since the Big Bang. Says team leader Gianfranco Brunetti (Instituto di Radioastronomia, Bologna, Italy), "The A521 system provides evidence that turbulence acts as a source of particle acceleration in an environment that is unique in the Universe due to its large spatial and temporal scales, and due to the low density and high temperature of the gas."

Source: Naval Research Laboratory

Explore further: Finding hints of gravitational waves in the stars

add to favorites email to friend print save as pdf

Related Stories

Black hole trio holds promise for gravity wave hunt

Jun 25, 2014

The discovery of three closely orbiting supermassive black holes in a galaxy more than four billion light years away could help astronomers in the search for gravitational waves: the 'ripples in spacetime' ...

A multi-wavelength view of radio galaxy Hercules A

Nov 29, 2012

(Phys.org)—Spectacular jets powered by the gravitational energy of a super massive black hole in the core of the elliptical galaxy Hercules A illustrate the combined imaging power of two of astronomy's ...

Fermi and Swift see 'shockingly bright' burst

May 03, 2013

A record-setting blast of gamma rays from a dying star in a distant galaxy has wowed astronomers around the world. The eruption, which is classified as a gamma-ray burst, or GRB, and designated GRB 130427A, ...

Recommended for you

Gravitational waves according to Planck

55 minutes ago

Scientists of the Planck collaboration, and in particular the Trieste team, have conducted a series of in-depth checks on the discovery recently publicized by the Antarctic Observatory, which announced last spring that it ...

Infant solar system shows signs of windy weather

58 minutes ago

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Finding hints of gravitational waves in the stars

7 hours ago

Scientists have shown how gravitational waves—invisible ripples in the fabric of space and time that propagate through the universe—might be "seen" by looking at the stars. The new model proposes that ...

How gamma ray telescopes work

8 hours ago

Yesterday I talked about the detection of gamma ray bursts, intense blasts of gamma rays that occasionally appear in distant galaxies. Gamma ray bursts were only detected when gamma ray satellites were put ...

The frequency of high-energy gamma ray bursts

10 hours ago

In the 1960s a series of satellites were built as part of Project Vela.  Project Vela was intended to detect violations of the 1963 ban on above ground testing of nuclear weapons.  The Vela satellites were ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

yyz
not rated yet Oct 16, 2008
Interested readers may want to check out these 3 previously published papers - "CXO observations of the multiple merger cluster Abell 521" @ arXiv:astro-ph/0508585v2 and "Shock acceleration as the origin of the radio relic in A 521" @ arXiv:0803.4127v1 , both published in 2008. Even more intriguing is 2003 paper by C Ferrari et al entitled "Multiple merging events in Abell 521" (Check NED or ADS for a free preprint of this paper). All 3 papers feature excellent images of Abell 521 at different wavelengths and supply abundant information on this peculiar, nearby galaxy cluster. Does anyone have links to a free preprint mentioned in the article above, as I am conducting a study of merging galaxy clusters? Makes for a great image of Abell 521, but also studies of dark matter distribution can be directly measured as well (remember the 'Bullet Cluster anyone?).