New recipe for self-healing plastic includes dash of food additive

Oct 15, 2008

Adding a food additive to damaged polymers can help restore them to full strength, say scientists at the University of Illinois who cooked up the novel, self-healing system.

The repair process, in which solvent-filled microcapsules embedded in an epoxy matrix rupture when a crack forms, is a major improvement over the original self-healing process first described in February 2001.

"While our previous solvent worked well for healing, it was also toxic," said Scott White, a professor of aerospace engineering and a researcher at the university's Beckman Institute. "Our new solvent is both non-toxic and less expensive."

During normal use, epoxy-based materials experience stresses that can cause cracking, which can lead to mechanical failure. Autonomic self-healing – a process in which the damage itself triggers the repair mechanism – can retain structural integrity and extend the lifetime of the material.

Designed to mimic the human body's ability to repair wounds, self-healing materials release a healing agent into the crack plane when damaged, and through chemical and physical processes, restore the material's initial fracture properties.

In November 2007, White and collaborators reported the use of chlorobenzene, a common – but toxic – organic solvent, which in epoxy resins achieved a healing efficiency of up to 82 percent.

In their latest work, which combined a non-toxic and Kosher-certified food additive (ethyl phenylactate) and an unreacted epoxy monomer into microcapsules as small as 150 microns in diameter, the researchers achieved a healing efficiency of 100 percent.

"Previously, the microcapsules contained only solvent, which flowed into the crack and allowed some of the unreacted matrix material to become mobile, react and repair the damage," said graduate research assistant Mary Caruso. "By including a tiny amount of unreacted epoxy monomer with the solvent in the microcapsules, we can provide additional chemical reactivity to repair the material."

When the epoxy monomer enters the crack plane, it bonds with material in the matrix to coat the crack and regain structural properties. In tests, the solvent-epoxy monomer combination was able to recover 100 percent of a material's virgin strength after damage had occurred.

"This work helps move self-healing materials from the lab and into everyday applications," said graduate research assistant Benjamin Blaiszik. "We've only begun to scratch the surface of potential applications using encapsulated solvent and epoxy resin."

In addition to White, Caruso and Blaiszik, the other co-authors of the paper were materials science and engineering professor Nancy Sottos and chemistry professor Jeffrey Moore. The researchers reported their findings in the scientific journal Advanced Functional Materials.

Source: University of Illinois at Urbana-Champaign

Explore further: Online Icicle Atlas offers jackpot of scientific data

add to favorites email to friend print save as pdf

Related Stories

'Planck' puts Einstein to the test

1 hour ago

Researchers, including physicists from Heidelberg University, have gained new insights into dark energy and the theory of gravitation by analysing data from the "Planck" satellite mission of the European ...

Professor takes madness out of the month

1 hour ago

With the NCAA Men's and Women's Basketballl Tournaments tipping off soon, brackets and bubble-busters are reaching a fever pitch. Dr. Jay Coleman, the Richard deRaismes Kip Professor of Operations Management and Quantitative ...

New detector sniffs out origins of methane

2 hours ago

Methane is a potent greenhouse gas, second only to carbon dioxide in its capacity to trap heat in Earth's atmosphere for a long time. The gas can originate from lakes and swamps, natural-gas pipelines, deep-sea ...

Distant supernova split four ways by gravitational lens

2 hours ago

Over the past several decades, astronomers have come to realize that the sky is filled with magnifying glasses that allow the study of very distant and faint objects barely visible with even the largest telescopes.

Recommended for you

Unified theory for skyrmion-materials

Mar 03, 2015

Magnetic vortex structures, so-called skyrmions, could in future store and process information very efficiently. They could also be the basis for high-frequency components. For the first time, a team of physicists ...

Why seashells' mineral forms differently in seawater

Mar 03, 2015

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth's oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.