Scientists engineer supersensitive receptor, gain better understanding of dopamine system

Oct 14, 2008

Genetically modifying a receptor found on the neurons that produce the neurotransmitter dopamine has given California Institute of Technology (Caltech) researchers a unique glimpse into the workings of the brain's dopamine system--as well as a new target for treating diseases that result from either too much or too little of this critical neurotransmitter.

Caltech scientists Henry Lester, Bren Professor of Biology, and Ryan Drenan, senior postdoctoral scholar in biology, worked with colleagues from Caltech, the University of Colorado at Boulder, the Rockefeller University, the University of Utah, and the pharmaceutical company Targacept. They genetically modified a type of brain receptor known as an "α6-containing nicotinic acetylcholine receptor" to make it more sensitive to both nicotine and acetylcholine. (Acetylcholine is another of the brain's neurotransmitters.)

The receptor in question is found primarily on neurons that produce the neurotransmitter dopamine. When the receptor is kicked into action by the presence of either nicotine or acetylcholine--two of the keys that fit its biochemical lock--the receptor prompts the neurons on which it sits to begin pumping out dopamine.

While previous studies of this same receptor had shown what happens when you block its function--when you put the brakes on dopamine production--this was the first time anyone was able to look at what happens when you make the receptor more sensitive and thus put the dopamine system into overdrive. "We were able to not only isolate this receptor's function, but also to amplify it," says Drenan, "and that allowed us to see exactly what it and it alone is capable of doing in the brain."

As it turns out, it's capable of doing a lot. Revved up by even low doses of nicotine, these receptors prompt the neurons on which they are clustered to let loose with a flood of dopamine. This flooding was obvious from the behavior of mice carrying the genetically modified receptors: because dopamine plays an important role in movement, the mice became quickly and significantly hyperactive. In fact, the researchers note, low doses of nicotine affect mice with these hypersensitive receptors in much the same way that amphetamines affect "normal" mice. Looking more closely at this phenomenon, the researchers write, "could be useful in understanding the causes of human hyperactivity such as that observed in ADHD."

"This technique also gives researchers the power to activate dopamine neurons selectively," says Lester. "We plan to exploit this opportunity to obtain new knowledge about dopamine neurons' functions."

While these sensitized receptors appear on dopamine neurons throughout the brain, the researchers note that they seem to play an especially critical role in what is called the mesolimbic pathway--one of four pathways that control dopamine production throughout the brain, and the one implicated in the addictive properties of drugs like nicotine.

To this end, Lester's team and their collaborators have already begun to explore the possibilities of targeting these receptors with specific drugs that might work to reduce their sensitivity to nicotine, potentially providing a new line of attack for treating nicotine addiction. In fact, notes Drenan, these same drugs might also one day prove useful in treating other dopamine-related conditions, such as ADHD, Parkinson's disease, and schizophrenia.

"By uncovering the biological role of these receptors, especially with regard to their role in the midbrain dopamine system, we show that they are excellent drug targets," says Drenan.

The paper, "In Vivo Activation of Midbrain Dopamine Neurons via Sensitized, High-Affinity á6* Nicotinic Acetylcholine Receptors," was published in the October 9 issue of the journal Neuron.

Source: California Institute of Technology

Explore further: Diet affects men's and women's gut microbes differently

add to favorites email to friend print save as pdf

Related Stories

Hoverbike drone project for air transport takes off

7 hours ago

What happens when you cross a helicopter with a motorbike? The crew at Malloy Aeronautics has been focused on a viable answer and has launched a crowdfunding campaign to support its Hoverbike project, "The ...

Study indicates large raptors in Africa used for bushmeat

7 hours ago

Bushmeat, the use of native animal species for food or commercial food sale, has been heavily documented to be a significant factor in the decline of many species of primates and other mammals. However, a new study indicates ...

'Shocking' underground water loss in US drought

8 hours ago

A major drought across the western United States has sapped underground water resources, posing a greater threat to the water supply than previously understood, scientists said Thursday.

Recommended for you

Diet affects men's and women's gut microbes differently

20 hours ago

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a study by scientists from The University of Texas at Austin and six other institutions published ...

Researchers explore what happens when heart cells fail

21 hours ago

Through a grant from the United States-Israel Binational Science Foundation, Biomedical Engineering Associate Professor Naomi Chesler will embark upon a new collaborative research project to better understand ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

zevkirsh
not rated yet Oct 14, 2008
THIS IS THE BEGINNING OF A HUGE AREA OF RESEARCH AMAZING!!!! KNOCKOUT DOPE MICE