Toward an effective treatment for a major hereditary disease

Oct 13, 2008

Scientists are reporting a key advance toward developing the first effective drug treatment for spinal muscular atrophy (SMA), a genetic disease that involves motor neuron loss and occurs in 1 out of every 6,000 births. SMA is the leading cause of hereditary infant death in the United States. The study is scheduled for publication online Oct. 8 by ACS Chemical Biology.

Mark E. Gurney, Jill Jarecki, and colleagues note that SMA is caused by a defective gene, SMN1, which fails to produce sufficient amounts of a key protein, called SMN (survival motor neuron), needed for normal motor neuron development. Scientists have screened more than 550,000 compounds in the search for a new SMA drug.

Recent research pointed to a group of compounds called C5-quinazolines that can boost SMN2 activity, a uniquely existing back-up gene for SMN1. In doing so, they showed promise for treating SMA by producing increased amounts of the needed protein.

In the new study, researchers identified exactly how these promising compounds work, a key step in moving forward toward medical use. They found that the substance targets a normal cellular protein, DcpS, involved in mRNA metabolism whose inhibition causes increased SMN expression. The finding could help guide the development of the first effective drugs for treating SMA and also lead to second generation drugs targeting this enzyme, the researchers say.

"The results outlined in the paper and carried out in collaboration with Families of SMA, deCODE chemistry & biostructures, Invitrogen Corporation, and Rutgers University represent a new understanding of the physiological mechanisms that can increase SMN expression and will allow us to move forward in advancing potential treatments for it, says Jill Jarecki, Ph.D., Research Director at Families of SMA.

Source: ACS

Explore further: Quality control for adult stem cell treatment

add to favorites email to friend print save as pdf

Related Stories

Rare window on spinal muscular atrophy genetics

Apr 07, 2009

Caused by a mutation of the SMN gene, spinal muscular atrophy (SMA) is an infantile and juvenile neurodegenerative disorder where motor neuron loss causes progressive paralysis. A new study published in the open access journal ...

From skin cells to motor neurons

Aug 29, 2011

A team of Harvard stem cell researchers has succeeded in reprogramming adult mouse skin cells directly into the type of motor neurons damaged in amyotrophic lateral sclerosis (ALS), best known as Lou Gehrig’s ...

Recommended for you

Quality control for adult stem cell treatment

8 minutes ago

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

A gene for brain size only found in humans

2 hours ago

About 99 percent of human genes are shared with chimpanzees. Only the small remainder sets us apart. However, we have one important difference: The brain of humans is three times as big as the chimpanzee ...

Experts warn of stem cell underuse

8 hours ago

Since the first experimental bone marrow transplant over 50 years ago, more than one million hematopoietic stem cell transplantations (HSCT) have been performed in 75 countries, according to new research charting the remarkable ...

Longer needles recommended for epinephrine autoinjectors

20 hours ago

(HealthDay)—Given the increasing epidemic of obesity, epinephrine autoinjectors (EAIs) for anaphylaxis require longer needles to ensure intramuscular injection, according to a study published online Feb. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.