Researchers developing wireless soil sensors to improve farming

Oct 10, 2008

Ratnesh Kumar keeps his prototype soil sensors buried in a box under his desk. He hopes that one day farmers will be burying the devices under their crops.

Kumar is leading an Iowa State University research team that's developing transceivers and sensors designed to collect and send data about soil moisture within a field. Eventually the researchers are hoping the sensors will also collect data about soil temperature and nutrient content.

A major goal is to build small sensors (the prototypes are about 2 inches wide, 4 inches long and less than an inch thick) that can do their work entirely underground. The sensors won't need wires or above-ground antennas, so farmers could work right over the top of them. The sensors would also be able to report their locations. That would make it easy to find sensors if a plow were to move them or when batteries need to be replaced.

Kumar, an Iowa State professor of electrical and computer engineering, said the sensors are designed to be buried about a foot deep in a grid pattern 80 to 160 feet apart. The sensors would relay data along the grid to a central computer that would record information for researchers or farmers.

The sensors could help researchers understand precisely how water moves through a field. They could help them develop better models to predict crop growth and yield. And they could help them understand the carbon and nitrogen cycles within soils.

And those sensors could help farmers manage their nutrient and water resources. That could maximize yields and profits. And it could minimize environmental impacts.

"If nutrients are in excess of what's needed, it doesn't help the yield," Kumar said. "Those resources just drain into the environment."

Stuart Birrell, an Iowa State associate professor of agricultural and biosystems engineering and a part of the sensor research team, said the project will provide the kind of real-time, high-resolution data that researchers and producers have been looking for.

"A challenge of precision agriculture is collecting data at a high enough resolution that you can make good decisions," Birrell said. "These sensors would provide very high resolution data for producers and researchers. They would give us another data layer to explain differences in yield and help us make management decisions."

Kumar said the sensors have worked underground in preliminary, point-to-point tests. A network of multiple sensors will be buried in a research field later this fall for more testing and development.

Also working on the project are Ahmed Kamal, a professor of electrical and computer engineering; Robert Weber, the David C. Nicholas Professor of electrical and computer engineering; Amy Kaleita, an assistant professor of agricultural and biosystems engineering and graduate students Candace Batts, Giorgi Chighladze, Jing Huang and Herman Sahota.

The project is supported by a three-year, $239,999 grant from the National Science Foundation.

"The goal is to hopefully have these sensors in production agriculture," Kumar said. "But first we need to develop them and answer more questions about how cost-effective they could be."

Source: Iowa State University

Explore further: Comfortable climate indoors with porous glass

add to favorites email to friend print save as pdf

Related Stories

NASA's IceCube no longer on ice

14 hours ago

NASA's Science Mission Directorate (SMD) has chosen a team at NASA's Goddard Space Flight Center in Greenbelt, Maryland, to build its first Earth science-related CubeSat mission.

Exploring Mars in low Earth orbit

8 hours ago

In their quest to understand life's potential beyond Earth, astrobiologists study how organisms might survive in numerous environments, from the surface of Mars to the ice-covered oceans of Jupiter's moon, ...

Free pores for molecule transport

4 hours ago

Metal-organic frameworks (MOFs) can take up gases similar to a sponge that soaks up liquids. Hence, these highly porous materials are suited for storing hydrogen or greenhouse gases. However, loading of many ...

Students' autonomous robot project could be a lifesaver

Jul 30, 2014

The building is on fire but the firefighters are unsure about what's fueling it or how hazardous the situation is. They place a robot at the entrance and program in a rudimentary set of directions using a ...

Recommended for you

Tesla says decision on battery factory months away

6 minutes ago

(AP)—Electric car maker Tesla Motors said Thursday that it is preparing a site near Reno, Nevada, as a possible location for its new battery factory, but is still evaluating other sites.

Comfortable climate indoors with porous glass

19 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

20 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

20 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

20 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0