Reproducing early and often is the key to rapid evolution in plants

Oct 02, 2008

Yale researchers have harnessed the power of 21st century computing to confirm an idea first proposed in 1916 — that plants with rapid reproductive cycles evolve faster. Their findings appear in the October 3rd edition of Science.

"Our study has profound consequence for the understanding of evolution made possible by the critical role of the computer in revealing major evolutionary patterns," said senior author Michael Donoghue, the G. Evelyn Hutchinson Professor of Ecology & Evolutionary Biology and Curator of Botany at Yale's Peabody Museum of Natural History.

Long involved with the Tree of Life Web Project, which is attempting to reconstruct the "tree" representing the genealogical relationships of all species on Earth, Donoghue has spearheaded the study of flowering plant evolution. In animals, the variation in rate of molecular evolution has been ascribed to differences in generation time, metabolic rate, DNA repair, and body size; in plants, the differences have been more difficult to determine.

The current analysis evaluated DNA sequence data for five major evolutionary lineages within the flowering plants, comparing genetic markers in their chloroplast, nuclear, and mitochondrial genomes. The authors also employed new methods for making some of the largest phylogenetic trees ever built.

A clear pattern emerged. Plants with a shorter generation time — from the time they germinate to the time that a seed they produce germinates — generally show more rapid rates of molecular evolution. Longer-lived trees and shrubs, by contrast, evolve more slowly and show less variability in their rates of evolution. The study also showed that the difference in rate seen between herbs and woody plants has been maintained through evolutionary time.

"To give an idea of the scope of the data managed in this study, the largest data set contained over 4500 species, while typical tests of such hypotheses are based on less than 50 species in total," said Yale graduate student and lead author Stephen Smith.

For each branch on each limb of the "tree," the researchers calculated the rate of molecular evolution by determining the number of DNA nucleotide substitutions per site per million years.

Their analyses highlight the difficulty in using molecular data to infer the timing of evolutionary events, and suggest that new strategies may be necessary in using DNA sequence "barcodes" to identify plant species, and in setting conservation priorities.

"Our data indicate that some kinds of plants will be easy to ID and others will be much more difficult," said Smith. "The slower a plant species evolves, the harder it is to differentiate it from related plants. But our analyses point in a good new direction."

Source: Yale University

Explore further: New study offers novel insights into pathogen behavior

add to favorites email to friend print save as pdf

Related Stories

Plants with pocket-sized genomes

Dec 12, 2014

Members of Genlisea, a genus of carnivorous plants, possess the smallest genomes known in plants. To elucidate genomic evolution in the group as a whole, researchers have now surveyed a wider range of species, ...

Fungus-growing ants selectively cultivate their crops

Dec 10, 2014

Ever since agriculture evolved ca 10.000 years ago, plants have been artificially selected to become the fast growing and highly productive varieties we know today. However, humans were not the first to see ...

Toxic fruits hold the key to reproductive success

Dec 09, 2014

In the course of evolution, animals have become adapted to certain food sources, sometimes even to plants or to fruits that are actually toxic. The driving forces behind such adaptive mechanisms are often ...

Parasites and the evolution of primate culture

Dec 03, 2014

Learning from others and innovation have undoubtedly helped advance civilization. But these behaviours can carry costs as well as benefits. And a new study by an international team of evolutionary biologists ...

Turn back the molecular clock, say Argentina's plant fossils

Dec 02, 2014

Molecular clocks—based on changes in genetic material—indicate much younger ages for a wide variety of plants found as fossils in southern Argentina than do the solid, geologic dates of those fossils, according to geoscientists ...

Recommended for you

Protections blocked, but sage grouse work goes on

43 minutes ago

(AP)—U.S. wildlife officials will decide next year whether a wide-ranging Western bird species needs protections even though Congress has blocked such protections from taking effect, Interior Secretary Sally Jewell said ...

Contrasting views of kin selection assessed

2 hours ago

In an article to be published in the January issue of BioScience, two philosophers tackle one of the most divisive arguments in modern biology: the value of the theory of "kin selection."

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.