Groundbreaking discovery may lead to stronger antibiotics

Oct 01, 2008

The last decade has seen a dramatic decline in the effectiveness of antibiotics, resulting in a mounting public health crisis across the world. A new breakthrough by University of Virginia researchers provides physicians and patients a potential new approach toward the creation of less resistant and more effective antibiotics.

"As bacteria become more resistant to our current classes of antibiotics, there also has been a general lack of new targets for developing novel antibiotics," says John H. Bushweller, Ph.D., who led a new study appearing in the September 26, 2008, issue of Molecular Cell. "This is a dangerous situation, but our discovery provides a starting point for a completely novel class of antibiotics, acting via a different mechanism."

What Dr. Bushweller, professor of molecular physiology and biological physics, and fellow researchers at the UVA Health System and Harvard Medical School have determined is the structure of a particular integral membrane enzyme, called DsbB – one of the many proteins that reside in cell membranes. These so-called integral membrane proteins are important, because they account for roughly one-third of any genome in the human body and are the targets of more than half of all currently used drugs.

Until now, scientists have been unable to acquire much structural information about these types of proteins; yet determining a protein's structure is vital in order to understand how it functions and how it can potentially operate as a drug target.

The study led by Dr. Bushweller represents the first time scientists have cracked the code required to solve a certain class of membrane protein structure by using nuclear magnetic resonance (NMR) spectroscopy, the preeminent technique for determining the structure of organic compounds. This novel NMR approach now gives the scientific community a brand new platform for attempting to determine structures of other important membrane proteins.

"What this means is that not only did we establish NMR spectroscopy as a potent tool for the characterization of the structure, dynamics and function of integral membrane proteins, but we also discovered that the DsbB enzyme is an exciting potential new target agent for the creation of novel antibiotics," says Dr. Bushweller. "This could give us the roadmap to an entirely new class of antibiotics."

Source: University of Virginia

Explore further: Dairy farms asked to consider breeding no-horn cows

add to favorites email to friend print save as pdf

Related Stories

Simple method of binding pollutants in water

17 hours ago

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead. To do this, researchers at the ...

Molecular ruler sets bacterial needle length

Mar 16, 2015

When a salmonella bacterium attacks a cell, it uses a nanoscopic needle to inject it with proteins to aid the infection. If the needle is too short, the cell won't be infected. Too long, and the needle breaks. ...

A 'warhead' molecule to hunt down deadly bacteria

Mar 12, 2015

Targeting deadly, drug-resistant bacteria poses a serious challenge to researchers looking for antibiotics that can kill pathogens without causing collateral damage in human cells. A team of Boston College ...

Recommended for you

Dairy farms asked to consider breeding no-horn cows

Mar 28, 2015

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

axemaster
not rated yet Oct 01, 2008
Yay, let's give the bacteria a whole new template to evolve resistance to, making them even harder to combat...

When you look at it, this definitely seems to be a war we can only lose, and lose, and lose. Vaccination seems so much more effective, given that it uses the body's own system (which evolves also). Why not develop better ways to analyse pathogens and manufacture vaccines quickly?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.