Groundbreaking discovery may lead to stronger antibiotics

Oct 01, 2008

The last decade has seen a dramatic decline in the effectiveness of antibiotics, resulting in a mounting public health crisis across the world. A new breakthrough by University of Virginia researchers provides physicians and patients a potential new approach toward the creation of less resistant and more effective antibiotics.

"As bacteria become more resistant to our current classes of antibiotics, there also has been a general lack of new targets for developing novel antibiotics," says John H. Bushweller, Ph.D., who led a new study appearing in the September 26, 2008, issue of Molecular Cell. "This is a dangerous situation, but our discovery provides a starting point for a completely novel class of antibiotics, acting via a different mechanism."

What Dr. Bushweller, professor of molecular physiology and biological physics, and fellow researchers at the UVA Health System and Harvard Medical School have determined is the structure of a particular integral membrane enzyme, called DsbB – one of the many proteins that reside in cell membranes. These so-called integral membrane proteins are important, because they account for roughly one-third of any genome in the human body and are the targets of more than half of all currently used drugs.

Until now, scientists have been unable to acquire much structural information about these types of proteins; yet determining a protein's structure is vital in order to understand how it functions and how it can potentially operate as a drug target.

The study led by Dr. Bushweller represents the first time scientists have cracked the code required to solve a certain class of membrane protein structure by using nuclear magnetic resonance (NMR) spectroscopy, the preeminent technique for determining the structure of organic compounds. This novel NMR approach now gives the scientific community a brand new platform for attempting to determine structures of other important membrane proteins.

"What this means is that not only did we establish NMR spectroscopy as a potent tool for the characterization of the structure, dynamics and function of integral membrane proteins, but we also discovered that the DsbB enzyme is an exciting potential new target agent for the creation of novel antibiotics," says Dr. Bushweller. "This could give us the roadmap to an entirely new class of antibiotics."

Source: University of Virginia

Explore further: Prized sea snail not at risk of extinction, federal officials say

add to favorites email to friend print save as pdf

Related Stories

Learning anti-microbial physics from cicada

Nov 27, 2014

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

New antibiotic in mushroom that grows on horse dung

Nov 07, 2014

Researchers from the Institute of Microbiology at ETH Zurich have discovered a new protein with antibiotic properties in a mushroom that grows on horse dung. Researchers are now exploring the various potential ...

Recommended for you

Keep dogs and cats safe during winter

16 hours ago

(HealthDay)—Winter can be tough on dogs and cats, but there are a number of safe and effective ways you can help them get through the cold season, an expert says.

Scientists target mess from Christmas tree needles

Dec 26, 2014

The presents are unwrapped. The children's shrieks of delight are just a memory. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree.

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

axemaster
not rated yet Oct 01, 2008
Yay, let's give the bacteria a whole new template to evolve resistance to, making them even harder to combat...

When you look at it, this definitely seems to be a war we can only lose, and lose, and lose. Vaccination seems so much more effective, given that it uses the body's own system (which evolves also). Why not develop better ways to analyse pathogens and manufacture vaccines quickly?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.