Groundbreaking discovery may lead to stronger antibiotics

Oct 01, 2008

The last decade has seen a dramatic decline in the effectiveness of antibiotics, resulting in a mounting public health crisis across the world. A new breakthrough by University of Virginia researchers provides physicians and patients a potential new approach toward the creation of less resistant and more effective antibiotics.

"As bacteria become more resistant to our current classes of antibiotics, there also has been a general lack of new targets for developing novel antibiotics," says John H. Bushweller, Ph.D., who led a new study appearing in the September 26, 2008, issue of Molecular Cell. "This is a dangerous situation, but our discovery provides a starting point for a completely novel class of antibiotics, acting via a different mechanism."

What Dr. Bushweller, professor of molecular physiology and biological physics, and fellow researchers at the UVA Health System and Harvard Medical School have determined is the structure of a particular integral membrane enzyme, called DsbB – one of the many proteins that reside in cell membranes. These so-called integral membrane proteins are important, because they account for roughly one-third of any genome in the human body and are the targets of more than half of all currently used drugs.

Until now, scientists have been unable to acquire much structural information about these types of proteins; yet determining a protein's structure is vital in order to understand how it functions and how it can potentially operate as a drug target.

The study led by Dr. Bushweller represents the first time scientists have cracked the code required to solve a certain class of membrane protein structure by using nuclear magnetic resonance (NMR) spectroscopy, the preeminent technique for determining the structure of organic compounds. This novel NMR approach now gives the scientific community a brand new platform for attempting to determine structures of other important membrane proteins.

"What this means is that not only did we establish NMR spectroscopy as a potent tool for the characterization of the structure, dynamics and function of integral membrane proteins, but we also discovered that the DsbB enzyme is an exciting potential new target agent for the creation of novel antibiotics," says Dr. Bushweller. "This could give us the roadmap to an entirely new class of antibiotics."

Source: University of Virginia

Explore further: Healthy humans make nice homes for viruses

add to favorites email to friend print save as pdf

Related Stories

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

Recommended for you

Healthy humans make nice homes for viruses

1 hour ago

The same viruses that make us sick can take up residence in and on the human body without provoking a sneeze, cough or other troublesome symptom, according to new research at Washington University School ...

Meteorite that doomed dinosaurs remade forests

4 hours ago

The meteorite impact that spelled doom for the dinosaurs 66 million years ago decimated the evergreens among the flowering plants to a much greater extent than their deciduous peers, according to a study ...

New camera sheds light on mate choice of swordtail fish

6 hours ago

We have all seen a peacock show its extravagant, colorful tail feathers in courtship of a peahen. Now, a group of researchers have used a special camera developed by an engineer at Washington University in ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

axemaster
not rated yet Oct 01, 2008
Yay, let's give the bacteria a whole new template to evolve resistance to, making them even harder to combat...

When you look at it, this definitely seems to be a war we can only lose, and lose, and lose. Vaccination seems so much more effective, given that it uses the body's own system (which evolves also). Why not develop better ways to analyse pathogens and manufacture vaccines quickly?