Researcher Discovers Molecules That Inhibit Important Gene Regulators

Sep 24, 2008

A North Carolina State University chemist has discovered a molecule that can potentially stop the production of cancer cells at the very beginning of the process by switching off the gene regulators responsible for turning healthy cells into cancer cells. The discovery could lead to the development of drugs that can treat some of the deadliest forms of cancer, including brain cancer.

Dr. Alex Deiters, assistant professor of chemistry at NC State, and colleagues at the Wistar Institute of Philadelphia believed that genetic regulators known as microRNAs would be an excellent target for cancer therapies, based on their importance in the process of "programming" a gene, also known as gene regulation.

MicroRNAs, or miRNAs, are small, single-stranded molecules of about 20 nucleotides – like miniature strands of DNA – that reside in every cell in the human body. These molecules are involved in more than 30 percent of all gene regulatory processes, and direct the translation of genes. When miRNAs are misregulated – either overrepresented or underrepresented – particular genes can be over or under expressed, and cancer can be the result.

The researchers targeted a particular microRNA, called miRNA-21, linked to cancers such as glioblastoma, an aggressive, hard-to-treat form of cancer which is responsible for 52 percent of all brain tumors. MiRNA-21 is responsible for the cancer cells' rapid growth, because it prevents the cancer cells from undergoing apoptosis, or cell death. By stopping the production of miRNA-21, the researchers hoped, they would induce cell death in the glioblastoma cells.

Deiters and colleagues tested more than 1,200 separate compounds before finally coming up with a molecule that decreased miRNA-21 levels by 80 percent. Not only did the compound work to decrease the level of miRNA-21, it presumably worked by inhibiting the transcription of the miRNA itself, without affecting any other miRNAs. While the compound doesn't destroy glioblastoma cells outright, decreasing the level of miRNA-21 removes the cells' anti-apoptotic factor, potentially making them more susceptible to traditional cancer therapy.

The results appear online in the journal Angewandte Chemie.

"Essentially we have discovered the first small molecule that inhibits miRNA function. Moreover, our inhibitor of miRNA-21 is specific to that particular miRNA and disrupts the transcription of that specific miRNA" Deiters says. "The work represents a real paradigm change in the way we approach cancer drug discovery."

Citation: "Small-Molecule Inhibitors of MicroRNA miR-21 Function", Dr. Alexander Deiters, North Carolina State University, Dr. Qihong Huang, Wistar Institute, online in Angewandte Chemie

Provided by North Carolina State University

Explore further: Programmed synthesis towards multi-substituted benzene derivatives

add to favorites email to friend print save as pdf

Related Stories

Obama recommends extended wilderness zone in Alaska

20 hours ago

US President Barack Obama said Sunday he would recommend a large swath of Alaska be designated as wilderness, the highest level of federal protection, in a move likely to anger oil proponents.

NASA craft set to beam home close-ups of Pluto

20 hours ago

Nine years after leaving Earth, the New Horizons spacecraft is at last drawing close to Pluto and on Sunday was expected to start shooting photographs of the dwarf planet.

Recommended for you

Cell imaging gets colorful

1 hour ago

The detection and imaging of protein-protein interactions in live cells just got a lot more colourful, thanks to a new technology developed by University of Alberta chemist Dr. Robert E. Campbell and his ...

New strategy to combat 'undruggable' cancer molecule

1 hour ago

Three of the four most fatal cancers are caused by a protein known as Ras; either because it mutates or simply because it ends up in the wrong place at the wrong time. Ras has proven an elusive target for ...

Chemists find a way to unboil eggs

2 hours ago

UC Irvine and Australian chemists have figured out how to unboil egg whites – an innovation that could dramatically reduce costs for cancer treatments, food production and other segments of the $160 billion ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.