Nanoscale Dominoes: Magnetic Moments Topple Over in Rows

Sep 24, 2008

Physicists at the Institut für Festkörperforschung in Germany have discovered a type of domino effect in rows of individual manganese atoms on a nickel surface. They determined that the magnetic arrangement of these nanowires varies depending on their lengths.

Using computer simulations and statistical models, the physicists found that if only a single atom is added or taken away, the magnetic structure of the nanowire changes entirely.

Specifically, when the number of atoms is odd, the magnetic moments (a measure of how well the nanowire acts as a magnet) are neatly aligned in opposite directions. When the number of atoms is even, the moments line up randomly, in a jumbled mix of different positions. Adding an atom at the end of the nanowire or taking one away causes the magnetic moments to topple over like a row of dominoes. But unlike dominoes, the effect can be completely reversed.

This new quantum mechanical effect makes magnetic switches possible on an atomic scale, and could one day be applied to the transporting and storing of magnetic information onto extremely small spaces. Their work is importance for the design of high speed, high storage capacity, and energy saving computing devices. The authors hope that it will be proven experimentally in the near future.

Citaton: S. Lounis, P. Dederichs, and S. Blugel, Physical Review Letters (forthcoming article)

Source: APL

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

add to favorites email to friend print save as pdf

Related Stories

Atomically thick metal membranes

Mar 14, 2014

For the first time researchers have shown that freestanding metal membranes consisting of a single layer of atoms can be stable under ambient conditions. This result of an international research team from ...

First thin films of spin ice reveal cold secrets

Mar 12, 2014

Thin films of spin ice have been shown to demonstrate surprising properties which could help in the development of applications of magnetricity, the magnetic equivalent of electricity.

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...