Swift Catches Farthest Ever Gamma-Ray Burst

Sep 22, 2008
This image merges the view through Swift's UltraViolet and Optical Telescope, which shows bright stars, and its X-ray Telescope, which captures the burst (orange and yellow). Credit: NASA/Swift/Stefan Immler

(PhysOrg.com) -- NASA's Swift satellite has found the most distant gamma-ray burst ever detected. The blast, designated GRB 080913, arose from an exploding star 12.8 billion light-years away.

"This is the most amazing burst Swift has seen," said the mission's lead scientist Neil Gehrels at NASA's Goddard Space Flight Center in Greenbelt, Md. "It's coming to us from near the edge of the visible universe."

Because light moves at finite speed, looking farther into the universe means looking back in time. GRB 080913's "lookback time" reveals that the burst occurred less than 825 million years after the universe began.

The star that caused this "shot seen across the cosmos" died when the universe was less than one-seventh its present age. "This burst accompanies the death of a star from one of the universe's early generations," says Patricia Schady of the Mullard Space Science Laboratory at University College London, who is organizing Swift observations of the event.

Gamma rays from the far-off explosion triggered Swift's Burst Alert Telescope at 1:47 a.m. EDT on Sept. 13. The spacecraft established the event's location in the constellation Eridanus and quickly turned to examine the spot. Less than two minutes after the alert, Swift's X-Ray Telescope began observing the position. There, it found a fading, previously unknown X-ray source.

Astronomers on the ground followed up as well. Using a 2.2-meter telescope at the European Southern Observatory in La Silla, Chile, a group led by Jochen Greiner at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, captured the bursts fading afterglow.

The telescope's software listens for alerts from Swift and automatically slewed to the burst position. Then, the team's Gamma-Ray Burst Optical/Near-Infrared Detector, or GROND, simultaneously captured the waning light in seven wavelengths. "Our first exposure began just one minute after the X-Ray Telescope started observing," Greiner says.

In certain colors, the brightness of a distant object shows a characteristic drop caused by intervening gas clouds. The farther away the object is, the longer the wavelength where this fade-out begins. GROND exploits this effect and gives astronomers a quick estimate of an explosion's shift toward the less energetic red end of the electromagnetic spectrum, or "redshift," which suggests its record-setting distance.

An hour and a half later, as part of Greiner's research, the Very Large Telescope at Paranal, Chile, targeted the afterglow. Analysis of the spectrum with Johan Fynbo of the University of Copenhagen established the blasts redshift at 6.7 -- among the most distant objects known.

Gamma-ray bursts are the universe's most luminous explosions. Most occur when massive stars run out of nuclear fuel. As their cores collapse into a black hole or neutron star, gas jets -- driven by processes not fully understood -- punch through the star and blast into space. There, they strike gas previously shed by the star and heat it, which generates bright afterglows.

The previous record holder was a burst with a redshift of 6.29, which placed it 70 million light-years closer than GRB 080913.

Swift, launched in November 2004, has had a banner year. In March, the satellite detected the brightest gamma-ray burst, which was visible to the human eye despite occurring billions of light-years away. And in January, the spacecraft's instruments caught the first X-rays from a new supernova days before optical astronomers saw the exploding star.

Swift is managed by Goddard. It was built and is being operated in collaboration with Penn State University, University Park, Pa., the Los Alamos National Laboratory in New Mexico, and General Dynamics of Gilbert, Ariz., in the U.S. International collaborators include the University of Leicester and Mullard Space Sciences Laboratory in the United Kingdom, Brera Observatory and the Italian Space Agency in Italy, and additional partners in Germany and Japan.

Provided by NASA

Explore further: Astronomers find 'cousin' planets around twin stars

add to favorites email to friend print save as pdf

Related Stories

Cosmic explosion spotted in neighbouring galaxy

May 28, 2014

(Phys.org) —NASA's Swift satellite reported an enormous explosion occurred this morning at 8.15 AEST in our neighbouring galaxy, Andromeda. This explosion is known as a Gamma Ray Burst (GRB), one of the ...

New candidate for most distant object in universe

May 25, 2011

(PhysOrg.com) -- A gamma-ray burst detected by NASA's Swift satellite in April 2009 has been newly unveiled as a candidate for the most distant object in the universe. At an estimated distance of 13.14 billion ...

Recommended for you

How small can galaxies be?

Sep 29, 2014

Yesterday I talked about just how small a star can be, so today let's explore just how small a galaxy can be. Our Milky Way galaxy is about 100,000 light years across, and contains about 200 billion stars. Th ...

The coolest stars

Sep 29, 2014

One way that stars are categorized is by temperature. Since the temperature of a star can determine its visual color, this category scheme is known as spectral type. The main categories of spectral type are ...

Simulations reveal an unusual death for ancient stars

Sep 29, 2014

(Phys.org) —Certain primordial stars—those 55,000 and 56,000 times the mass of our Sun, or solar masses—may have died unusually. In death, these objects—among the Universe's first-generation of stars—would ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

enginarc
4 / 5 (2) Sep 23, 2008
Can someone suggest me an internet article where ican comprehend time-distance relationship in the universe?

I just don't understand how a t 800M (t being time of big bang) born/destroyed object can be 12.8 b lyears away when it was bursting gamma rays? did the universe expended beyond light speed when big bang occured??

ty

drel
5 / 5 (1) Sep 23, 2008
GRB 080913's "lookback time" reveals that the burst occurred less than 825 million years after the universe began.

The star that caused this "shot seen across the cosmos" died when the universe was less than one-seventh its present age.

Age of universe at time of burst = 825 MYO
Current age of universe = 13.7 BYO

.825/13.7= 1/16.6

Well I must admit that almost one-seventeenth is less than one-seventh.

enginarc, I have found that they like to mix things up by sometime providing a light-year distance to where the star's prior location is now (relative to earth) and sometimes how far away it was when the light we now see left the star. The former adds the distance (between the star and earth) that the universe has expanded during the light's travel time. (makes for confusing numbers)