When healing turns to scarring: Research reveals why it happens and how to stop it

Sep 18, 2008

For the first time, research from The University of Western Ontario has revealed the mechanisms involved in the origin of scarring or fibrotic diseases, as well as a way to control it. The study, led by Andrew Leask of the CIHR Group in Skeletal Development and Remodeling, is published in the Journal of Clinical Investigation.

"People are generally unaware of how prevalent scarring diseases are, and the impact they have on our health," says Leask, a professor in the Department of Physiology and Pharmacology at Western's Schulich School of Medicine & Dentistry. "Cardiovascular and other diseases including diabetes, cancer, and pulmonary fibrosis all involve scarring, which affects the organs' ability to function. Another example is scleroderma, a progressive scarring disease affecting 300,000 people in the United States and 40,000 Canadians. It's estimated about 40% of all deaths and health care costs in North America are related to scarring or fibrosis."

During tissue repair, specialized cells called myofibroblasts migrate to the wound where they generate the adhesive and tensile forces required for wound closure. Normally, these myofibroblasts then disappear from the wound. But if they persist and continue to make connective tissue, it can become too thick, preventing the organ from functioning properly. So for instance, in the case of diabetes, this scarring could cause the kidney to shut down, requiring dialysis or a transplant.

The research team which included investigators from Mount Sinai Hospital in Toronto and University College London in England, identified that a particular protein called glycogen synthase kinase 3 normally acts as a brake to terminate repair. If this protein is impaired, scarring results after wounding. Investigators also found elevated levels of a protein called endothelin-1. Next, they used a drug, already on the market, which blocks endothelin-1 and found it prevented scarring but did not affect wound closure in mice. While the use of the drug for this purpose would still have to be tested in humans, Leask believes this therapy could stop fibrosis from occurring without affecting normal tissue repair.

Source: University of Western Ontario

Explore further: Sharks' skin has teeth in the fight against hospital superbugs

add to favorites email to friend print save as pdf

Related Stories

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

Understanding disease states through math

Jan 13, 2014

Angela Reynolds, Ph.D., is in the business of translating math to biology and biology back to math. As an applied mathematician, she can turn chemical reactions into equations.

Head-butting did not lure mates for horny-domed dinosaur

Nov 13, 2013

Pachycephalosaurus is famous for its appearance in the movie Jurassic Park: The Lost World, where one is shown battering a man and his car. To achieve the feat the dinosaur used its greatly-thickened skull, ...

Cells move as concentration shifts

Jul 29, 2013

What do wound healing, cancer metastasis, and bacteria colonies have in common? They all involve the collective displacement of biological cells. New research sheds some new light on the physical mechanisms provoking the ...

Recommended for you

Tracing the rise of Ebola in West Africa

9 hours ago

Since the Ebola outbreak first emerged in West Africa, The Associated Press has been reporting on it. A timeline compiled from AP dispatches since March shows the dreaded disease being identified in a remote ...

Spinal manipulation helps relieve back-related leg pain

9 hours ago

(HealthDay)—Adding spinal manipulative therapy (SMT) to home exercise and advice (HEA) may improve short-term outcomes in patients with subacute and chronic back-related leg pain (BRLP), according to research ...

User comments : 0