Different stem cell types defined by exclusive combinations of genes working together

Sep 18, 2008

In the new issue of Cell Stem Cell, scientists report that the same transcription factor, which is crucial for the survival of different stem cell types, can behave differently.

This study clearly showed for the first time that different types of stem cells are defined by exclusive combinations of genes working together, and this is under the influence of a single key stem cell factor (called Sall4).

The finding is timely since other researchers have recently revealed that specific genetic recipes can be used to turn non-stem cells into different stem cells that can be useful clinically.

This finding reveals important insights about how scientists may be able to manipulate and engineer different stem cells for the treatment of human degenerative disorders.

Understanding the behaviour of transcription factors, a class of gene regulators, helps pave the way for important advancements in stem cell technology and clinical research.

Stem cells are important for the cell-based therapy of many degenerative tissue disorders. Each type of body tissue has its own unique type of stem cells whose behaviour is controlled by different sets of genes.

Given the enormous complexity of each stem cell type and the underlying genetic bases for their unique purpose, it has been a major challenge for scientists to unravel the similarities and differences between the different stem cells.

The latest research, led by Bing Lim, Senior Group Leader at the Genome Institute of Singapore (GIS), focused on identifying and understanding the functions of powerful genetic molecules, also known as "stem cell factors".

Dr. Bing Lim said, "This new discovery has provided us with important new leads and ideas on how to grow and expand various stem cells for clinical research and treatment needs."

Dr. Daniel Tenen, Professor of Medicine at Harvard Medical School, and Director for Cancer Research Centre of Excellence at the National University of Singapore, said, "These studies are of great significance, as they provide important clues as to how a single transcription factor might regulate different targets in different stem cells."

Interestingly, this stem cell factor also appeared to be associated with certain diseases, particularly leukemia.

Dr. Li Chai, Instructor at the Department of Pathology at the Harvard Medical School, added that, "as Sall4 plays an important role in both normal hematopoietic stem cell function and in leukemia stem cells, these findings may have clinical relevance; they may lead to understanding differences between normal and cancer stem cells."

Source: Agency for Science, Technology and Research (A*STAR), Singapore

Explore further: Researchers study vital 'on/off switches' that control when bacteria turn deadly

add to favorites email to friend print save as pdf

Related Stories

Stem cells use 'first aid kits' to repair damage

11 hours ago

Stem cells hold great promise as a means of repairing cells in conditions such as multiple sclerosis, stroke or injuries of the spinal cord because they have the ability to develop into almost any cell type. ...

Controlling the transition between generations

14 hours ago

Rafal Ciosk and his group at the FMI have identified an important regulator of the transition from germ cell to embryonic cell. LIN-41 prevents the premature onset of embryonic transcription in oocytes poised ...

Recommended for you

Asian stars enlisted to fight African rhino poaching

1 hour ago

Increasingly desperate South African conversationists are turning to a multi-national team of "rhino ambassadors" to try to end the scourge of poaching—and Vietnamese pop diva Hong Nhung has been recruited ...

For legume plants, a new route from shoot to root

1 hour ago

A new study shows that legume plants regulate their symbiotic relationship with soil bacteria by using cytokinins—signaling molecules— that are transmitted through the plant structure from leaves into the roots to control ...

A new quality control pathway in the cell

15 hours ago

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0