Different stem cell types defined by exclusive combinations of genes working together

Sep 18, 2008

In the new issue of Cell Stem Cell, scientists report that the same transcription factor, which is crucial for the survival of different stem cell types, can behave differently.

This study clearly showed for the first time that different types of stem cells are defined by exclusive combinations of genes working together, and this is under the influence of a single key stem cell factor (called Sall4).

The finding is timely since other researchers have recently revealed that specific genetic recipes can be used to turn non-stem cells into different stem cells that can be useful clinically.

This finding reveals important insights about how scientists may be able to manipulate and engineer different stem cells for the treatment of human degenerative disorders.

Understanding the behaviour of transcription factors, a class of gene regulators, helps pave the way for important advancements in stem cell technology and clinical research.

Stem cells are important for the cell-based therapy of many degenerative tissue disorders. Each type of body tissue has its own unique type of stem cells whose behaviour is controlled by different sets of genes.

Given the enormous complexity of each stem cell type and the underlying genetic bases for their unique purpose, it has been a major challenge for scientists to unravel the similarities and differences between the different stem cells.

The latest research, led by Bing Lim, Senior Group Leader at the Genome Institute of Singapore (GIS), focused on identifying and understanding the functions of powerful genetic molecules, also known as "stem cell factors".

Dr. Bing Lim said, "This new discovery has provided us with important new leads and ideas on how to grow and expand various stem cells for clinical research and treatment needs."

Dr. Daniel Tenen, Professor of Medicine at Harvard Medical School, and Director for Cancer Research Centre of Excellence at the National University of Singapore, said, "These studies are of great significance, as they provide important clues as to how a single transcription factor might regulate different targets in different stem cells."

Interestingly, this stem cell factor also appeared to be associated with certain diseases, particularly leukemia.

Dr. Li Chai, Instructor at the Department of Pathology at the Harvard Medical School, added that, "as Sall4 plays an important role in both normal hematopoietic stem cell function and in leukemia stem cells, these findings may have clinical relevance; they may lead to understanding differences between normal and cancer stem cells."

Source: Agency for Science, Technology and Research (A*STAR), Singapore

Explore further: Researchers collect soil samples from around the globe in effort to conduct fungi survey

add to favorites email to friend print save as pdf

Related Stories

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Signaling molecule crucial to stem cell reprogramming

Nov 20, 2014

While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with ...

Can stress management help save honeybees?

Nov 24, 2014

Honeybee populations are clearly under stress—from the parasitic Varroa mite, insecticides, and a host of other factors—but it's been difficult to pinpoint any one of them as the root cause of devast ...

Surrogate sushi: Japan biotech for bluefin tuna

Nov 20, 2014

Of all the overfished fish in the seas, luscious, fatty bluefin tuna are among the most threatened. Marine scientist Goro Yamazaki, who is known in this seaside community as "Young Mr. Fish," is working to ...

Scientists map mouse genome's 'mission control centers'

Nov 19, 2014

When the mouse and human genomes were catalogued more than 10 years ago, an international team of researchers set out to understand and compare the "mission control centers" found throughout the large stretches ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

9 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Male sex organ distinguishes 30 millipede species

10 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

How can we avoid kelp beds turning into barren grounds?

13 hours ago

Urchins are marine invertebrates that mould the biological richness of marine grounds. However, an excessive proliferation of urchins may also have severe ecological consequences on marine grounds as they ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.