Better understanding of blood vessel constrictor needed to harness its power for patients

Sep 18, 2008
Better understanding of blood vessel constrictor needed to harness its power for patients
Dr. Adviye Ergul, physiologist in the MCG Schools of Medicine and Graduate Studies. Credit: Medical College of Georgia

To harness endothelin-1's power to constrict blood vessels and help patients manage high blood pressure or heart failure, scientists must learn more about how endothelin functions naturally and in disease states, says a Medical College of Georgia researcher.

Despite strong laboratory evidence that blocking endothelin-1 receptors would be an effective, targeted therapy for these two major health problems, the drugs failed patients, says Dr. Adviye Ergul, physiologist in the MCG Schools of Medicine and Graduate Studies.

"These endothelin-1 receptors are logical targets for drugs to treat hypertension because of their key role in vasoconstriction, but the targets are moving and we don't know how one target plays off another," says Dr. Ergul, who discussed novel aspects of endothelin receptor interaction during the 62nd High Blood Pressure Research Conference and Workshop in Atlanta.

"The current thinking in pharmacology is one hormone, one receptor equals boom: the effect. I think cells are much smarter," she says. This week, Dr. Ergul challenged colleagues across the country to consider emerging evidence that usual receptor communication is likely more complex than they thought and that disease may significantly alter communication.

Endothelin-1 receptors are known to interact: one way blood vessels keep a healthy tone, for example, is that a and b receptors on smooth muscle cells prompt constriction while b receptors on the lining of blood vessels work with nitric oxide to promote relaxation. Endothelin-1 receptors on the kidneys are a player as well, helping wring out excess water and salt. "There is a delicate balance," says Dr. Ergul.

But there's apparently more to the relationships. She holds up a handful of recent journal articles which reflect mounting evidence that receptors actively work as teams of two or more. That teamwork could change their function. New technology enables scientists to literally watch receptors move closer together on a cell surface, clearly indicating that something is going on.

"Numerous drugs have been developed that are antagonists that can block these receptors with the idea they can be used in hypertension and heart failure. In animal models, they worked well," she says. But in clinical trials they failed badly; a drug for heart failure actually worsened problems such as labored breathing and swelling in patients already having difficulty moving blood through their body.

The first antagonists blocked both known receptors: a and b; the next generation blocked one or the other but still didn't work. A notable exception is endothelin-1 antagonists that reduce excessive pressure and tissue buildup inside the blood vessels of patients with pulmonary hypertension. In addition to constricting blood vessels, endothelin-1 can help blood vessels grow bigger but too much can result in protein deposits that stiffen blood vessel walls.

Scientists have been scratching their heads over why blocking these receptors hasn't panned out; they've even looked for an "atypical" receptor that might explain it. But Dr. Ergul, an expert on endothelin-1's role in diabetes, believes the unexpected results are better explained by poorly understood relationships in normal and disease states. "How receptors dimerize, how they get closer together on the cell surface, likely needs to affect our drug design," she says.

Source: Medical College of Georgia

Explore further: Not just for the holidays, mistletoe could fight obesity-related liver disease

add to favorites email to friend print save as pdf

Related Stories

Atomic map reveals clues to how cholesterol is made

Oct 12, 2014

In spite of its dangerous reputation, cholesterol is in fact an essential component of human cells. Manufactured by the cells themselves, it serves to stiffen the cell's membrane, helping to shape the cell ...

ISA virus spreads via red blood cells in blood vessels

Apr 10, 2013

New research shows how the interaction between Atlantic salmon and the ISA virus leads to the development and spreading of the influenza-like disease ISA in fish. The new findings may be of interest to research ...

Recommended for you

Stem cells faulty in Duchenne muscular dystrophy

2 hours ago

Like human patients, mice with a form of Duchenne muscular dystrophy undergo progressive muscle degeneration and accumulate connective tissue as they age. Now, researchers at the Stanford University School of Medicine have ...

Here's how the prion protein protects us

7 hours ago

The cellular prion protein (PrPC) has the ability to protect the brain's neurons. Although scientists have known about this protective physiological function for some time, they were lacking detailed knowledge ...

Regulation of maternal miRNAs in early embryos revealed

8 hours ago

The Center for RNA Research at the Institute for Basic Science (IBS) has succeeded in revealing, for the first time, the mechanism of how miRNAs, which control gene expression, are regulated in the early embryonic stage.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.