University of Leicester scientists funded to design concepts for NASA microgravity

Sep 18, 2008
SpaceShipTwo.

Two University of Leicester scientists have recently been awarded 10,000 to design concepts for scientific experiments which would fly on the upcoming new generation of manned suborbital spacecraft, such as Virgin Galactic's SpaceShipTwo. Suborbital spacecraft are launched into space, but do not have enough speed to achieve orbit. They experience several minutes of microgravity ("free fall") and exposure to the environment of space before falling back to Earth.

Dr Duncan Law-Green and Mr David Boyce of the Department of Physics & Astronomy at the University of Leicester have each been awarded $5,000 by the Universities Space Research Association (USRA) to design microgravity experiments for submission to NASA. They are currently working with the Space Research Centre (SRC) at Leicester on the development of their proposals. The NASA programme was originally conceived by Dr. Alan Stern, former head of NASA's Science Mission Directorate. A successful submission may lead to a pilot programme of suborbital research flights sometime around 2011-2012.

The proposed Leicester experiments deal with the physical and chemical properties of regolith, or the powdery material found on the surface of the Moon and other rocky bodies in the solar system. Improved knowledge of the properties and potential uses of this material will be very important for when humans return to the Moon in around 2020.

Dr. Law-Green commented "Leicester has a long history of research with suborbital rockets. A Leicester experiment will shortly be flying on a Black Brant rocket from White Sands, New Mexico. The advantage of the new commercial suborbital spaceplanes like SpaceShipTwo, is that they will provide scientists with cheaper and more frequent access to space, as well as the ability to have a researcher in place to monitor an experiment in real-time. If we want to fly an experiment again the following day, we will be able to do that more easily with a spaceplane than with a conventional sounding rocket. The research potential of this new generation of commercial manned spacecraft is very exciting."

Source: University of Leicester

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

Cyclist's helmet, Volvo car to communicate for safety

1 hour ago

Volvo calls it "a wearable life-saving wearable cycling tech concept." The car maker is referring to a connected car and helmet prototype that enables two-way communication between Volvo drivers and cyclists ...

Rising anger as Nicaragua canal to break ground

2 hours ago

As a conscripted soldier during the Contra War of the 1980s, Esteban Ruiz used to flee from battles because he didn't want to have to kill anyone. But now, as the 47-year-old farmer prepares to fight for ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.