New carbon nanomaterial shows promise of storing large quantities of renewable electrical energy

Sep 16, 2008

Engineers and scientists at The University of Texas at Austin have achieved a breakthrough in the use of a one-atom thick structure called "graphene" as a new carbon-based material for storing electrical charge in ultracapacitor devices, perhaps paving the way for the massive installation of renewable energies such as wind and solar power.

The researchers believe their breakthrough shows promise that graphene (a form of carbon) could eventually double the capacity of existing ultracapacitors, which are manufactured using an entirely different form of carbon.

"Through such a device, electrical charge can be rapidly stored on the graphene sheets, and released from them as well for the delivery of electrical current and, thus, electrical power," says Rod Ruoff, a mechanical engineering professor and a physical chemist. "There are reasons to think that the ability to store electrical charge can be about double that of current commercially used materials. We are working to see if that prediction will be borne out in the laboratory."

Two main methods exist to store electrical energy: in re-chargeable batteries and in ultracapacitors which are becoming increasingly commercialized but are not yet as popularly known. An ultracapacitor can be used in a wide range of energy capture and storage applications and are used either by themselves as the primary power source or in combination with batteries or fuel cells. Some advantages of ultracapacitors over more traditional energy storage devices (such as batteries) include: higher power capability, longer life, a wider thermal operating range, lighter, more flexible packaging and lower maintenance, Ruoff says.

Ruoff and his team prepared chemically modified graphene material and, using several types of common electrolytes, have constructed and electrically tested graphene-based ultracapacitor cells. The amount of electrical charge stored per weight (called "specific capacitance") of the graphene material has already rivaled the values available in existing ultracapacitors, and modeling suggests the possibility of doubling the capacity.

"Our interest derives from the exceptional properties of these atom-thick and electrically conductive graphene sheets, because in principle all of the surface of this new carbon material can be in contact with the electrolyte," says Ruoff, who holds the Cockrell Family Regents Chair in Engineering #7. "Graphene's surface area of 2630 m2/gram (almost the area of a football field in about 1/500th of a pound of material) means that a greater number of positive or negative ions in the electrolyte can form a layer on the graphene sheets resulting in exceptional levels of stored charge."

The U.S. Department of Energy has said that an improved method for storage of electrical energy is one of the main challenges preventing the substantial installation of renewable energies such as wind and solar power. Storage is vital for times when the wind doesn't blow or the sun doesn't shine. During those times, the stored electrical energy can be delivered through the electrical grid as needed.

Ruoff's team includes graduate student Meryl Stoller and post-doctoral fellows Sungjin Park, Yanwu Zhu, and Jinho An, all from the Mechanical Engineering Department and the Texas Materials Institute at the university. Their findings will be published in the Oct. 8 edition of Nano Letters. The article was posted on the journal's Web site this week.

This technology, Stoller says, has the promise of significantly improving the efficiency and performance of electric and hybrid cars, buses, trains and trams. Even everyday devices such as office copiers and cell phones benefit from the improved power delivery and long lifetimes of ultracapacitors.

Ruoff says significant implementation of wind farms for generation of electricity is occurring throughout the world and the United States, with Texas and California first and second in the generation of wind power.

According to the American Wind Energy Association, in 2007 wind power installation grew 45 percent in this country. Ruoff says if the energy production from wind turbine technology grew at 45 percent annually for the next 20 years, the total energy production (from wind alone) would almost equal the entire energy production of the world from all sources in 2007.

"While it is unlikely that such explosive installation and use of wind can continue at this growth rate for 20 years, one can see the possibilities, and also ponder the issues of scale," he says. "Electrical energy storage becomes a critical component when very large quantities of renewable electrical energy are being generated."

Source: University of Texas at Austin

Explore further: Graphene sensor tracks down cancer biomarkers

add to favorites email to friend print save as pdf

Related Stories

Future of energy storage

Sep 16, 2014

MIT professor Fikile Brushett is in the process of taking the power generated by wind and solar, chemically lashing it to molecules derived from flora and fauna, and storing it in liquids until it's needed ...

Recommended for you

Twisted graphene chills out

Sep 17, 2014

(Phys.org) —When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown.

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
3 / 5 (3) Sep 16, 2008
Good Work! Don't Stop! You're ON THE RIGHT TRACK!
gmurphy
3.5 / 5 (2) Sep 17, 2008
this technology is incredibly important, whatever happened to EESTOR?
LOwen
not rated yet Sep 21, 2008
Fantastic, changed films that can be molded to fit into any environment.
Soylent
not rated yet Sep 30, 2008
this technology is incredibly important, whatever happened to EESTOR?


They're still around, they still make the same claims but they've failed to deliver their prototype on time.
NOM
not rated yet Dec 11, 2008
Vulvox has begun experiments on lithium ion batteries with unprecedented energy storage capacity; 42 kwh/kg. They also take advantage of inexpensive processes of manufacturing silicon nanowires. Our breakthrough batteries will store as much energy per unit weight as fuel cells and will be used in the growing fleet of plug in hybrid vehicles. Our R&D program has been underway for several years. Vulvox is developing a comparable battery that will cost much less to manufacture, and we've been in the race to develop a super lithium ion battery for some time now. Our research was based on the same theoretical foundations as the research at Stanford. Our patent pending carbon nanotube adhesive material has shown properties such as ultra high porosity; necessary to manufacture ultracapacitors and it might be useful as electrode material for lithium ion batteries also.
http://vulvox.tri...d10.html


Farbstein, I'm curious. Have you ever managed to actually con anyone out of any money with your spam?