Water purification down the nanotubes

Sep 15, 2008

Nanotechnology could be the answer to ensuring a safe supply of drinking water for regions of the world stricken by periodic drought or where water contamination is rife. Writing in the International Journal of Nuclear Desalination, researchers in India explain how carbon nanotubes could replace conventional materials in water-purification systems.

Water shortages and lack of access to safe drinking water will continue to grow as major global problems. At present, more than one billion people lack access to safe drinking water and 2.4 billion people lack access to proper sanitation, nearly all of them in the developing countries. At present a third of the world's population live in water-stressed countries, and by 2025, this is expected to rise to two-thirds.

S. Kar, R.C. Bindal, S. Prabhakar, P.K. Tewari, K. Dasgupta, and D. Sathiyamoorthy of the Bhabha Atomic Research Centre (BARC) in Mumbai, India, explain how new water purification technologies are constantly being investigated but to be viable in the developing world these have to be relatively simple and inexpensive to install, operate, and maintain.

They have turned to nanostructured, the carbon nanotubes, hollow carbon fibers less than a billionth the thickness of a human hair. The unique chemical properties of carbon nanotubes mean that only very small molecules, such as water molecules can pass along their interiors, whereas viruses, bacteria, toxic metal ions, and large noxious organic molecules cannot.

The team points out that the smooth and water repellant interior of carbon nanotubes means that a filter based on this technology would be very efficient, allowing a high flow rate of water through the filter without fouling. Importantly, the power needed to drive water through such a system will be low compared to conventional membrane technology.

However, to be useful as a nanotech filtration system for contaminated water, these nanoscale structures need to be engineered to form well-defined arrangements to allow the efficient decontamination of water. The team has now investigated the potential of forming water filtration systems based on carbon nanotubes that could remove arsenic, fluoride, heavy metals and toxic organic chemicals. Carbon nanotubes have impressive credentials for water purification, the researchers say.

Source: Inderscience Publishers

Explore further: Gold nanorods target cancer cells

add to favorites email to friend print save as pdf

Related Stories

Smart anti-icing system for rotor blades

Dec 01, 2014

In very cold climate zones, the wind can blow with tremendous force. But wind turbines have rarely been built in these regions up to now. The risk of ice formation on the rotor blades is just too high. But ...

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

Recommended for you

Gold nanorods target cancer cells

6 hours ago

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Forehead
not rated yet Mar 24, 2009
"...carbon fibers less than a billionth the thickness of a human hair..."



Isn't the normal expression 50,000 times smaller than the thickness of a human hair? In fact, wouldn't a billionth the width of a human hair get down to the atto scale, below the size of an atom?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.