Purifying parasites with light

Sep 12, 2008

Researchers have developed a clever method to purify parasitic organisms from their host cells, which will allow for more detailed proteomic studies and a deeper insight into the biology of organisms that cause millions of cases of disease each year.

Many infectious pathogens, like those that cause Toxoplasmosis or Leishmaniases, have a complex life cycle alternating between free-living creature and cell-enclosed parasite. A thorough analysis of the proteins that help these organisms undergo this lifestyle change would be tremendously useful for drug or vaccine development; however, it's extremely difficult to separate the parasites from their host cell for detailed study.

Electron micrographs (left=low, right=high magnification) highlighting the purification of Leishmania parasites (dark shapes) from their host cells. Credit: MCP

As reported in the September Molecular & Cellular Proteomics, Toni Aebischer and colleagues worked around this problem by designing special fluorescent Leishmania mexicana (one of the many Leishmaniases parasites). They then passed infected cells through a machine that can separate cell components based on how much they glow. Using this approach, the researchers separated the Leishmania parasites with only about 2% contamination, far better than current methods.

They then successfully identified 509 proteins in the parasites, 34 of which were more prominent in parasites than free –living Leishmania. The results yielded many characteristics of these organisms, such as a high presence of fatty acid degrading enzymes, which highlights adaptation to intracellularly available energy sources. The identified proteins should provide a good data set for continued selection of drug targets, and the success of this method should make it a good resource for other cellular parasites like malaria.

Citation: "Transgenic, Fluorescent Leishmania mexicana Allow Direct Analysis of the Proteome of Intracellular Amastigotes" by Daniel Paape, Christoph Lippuner, Monika Schmid, Renate Ackermann, Martin E. Barrios-Llerena, Ursula Zimny-Arndt, Volker Brinkmann, Benjamin Arndt, Klaus Peter Pleissner, Peter R. Jungblut, and Toni Aebischer

Article URL: www.mcponline.org/cgi/content/full/7/9/1688

Source: American Society for Biochemistry and Molecular Biology

Explore further: Man 'expelled from Croatia for punching monk seal'

add to favorites email to friend print save as pdf

Related Stories

Fermi satellite detects gamma-rays from exploding novae

56 minutes ago

The Universe is home to a variety of exotic objects and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. ASU Regents' Professor Sumner Starrfield is part of a team that ...

NASA sees Genevieve squeezed between 3 tropical systems

1 hour ago

The resurrected Tropical Depression Genevieve appears squeezed between three other developing areas of low pressure. Satellite data from NOAA and NASA continue to show a lot of tropical activity in the Eastern ...

US warns retailers on data-stealing malware

1 hour ago

US government cybersecurity watchdogs warned retailers Thursday about malware being circulated that allows hackers to get into computer networks and steal customer data.

Recommended for you

Molecular gate that could keep cancer cells locked up

26 minutes ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

3 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

User comments : 0