Stem cell regeneration repairs congenital heart defect

Sep 11, 2008

Mayo Clinic investigators have demonstrated that stem cells can be used to regenerate heart tissue to treat dilated cardiomyopathy, a congenital defect. Publication of the discovery was expedited by the editors of Stem Cells and appeared online in the "express" section of the journal's Web site at http://stemcells.alphamedpress.org/.

The study expands on the use of embryonic stem cells to regenerate tissue and repair damage after heart attacks and demonstrates that stem cells also can repair the inherited causes of heart failure.

"We've shown in this transgenic animal model that embryonic stem cells may offer an option in repairing genetic heart problems," says Satsuki Yamada, M.D., Ph.D., cardiovascular researcher and first author of the study. "Close evaluation of genetic variations among individuals to identify optimal disease targets and customize stem cells for therapy opens a new era of personalized regenerative medicine," adds Andre Terzic, M.D., Ph.D., Mayo Clinic cardiologist and senior author and principal investigator.

The team reproduced prominent features of human malignant heart failure in a series of genetically altered mice. Specifically, the "knockout" of a critical heart-protective protein known as the KATP channel compromised heart contractions and caused ventricular dilation or heart enlargement. The condition, including poor survival, is typical of patients with heritable dilated cardiomyopathy.

Researchers transplanted 200,000 embryonic stem cells into the wall of the left ventricle of the knockout mice. After one month the treatment improved heart performance, synchronized electrical impulses and stopped heart deterioration, ultimately saving the animal's life. Stem cells had grafted into the heart and formed new cardiac tissue. Additionally, the stem cell transplantation restarted cell cycle activity and halved the fibrosis that had been developing after the initial damage. Stem cell therapy also increased stamina and removed fluid buildup in the body, so characteristic in heart failure.

The researchers say their findings show that stem cells can achieve functional repair in non-ischemic (cases other than blood-flow blockages) genetic cardiomyopathy. Further testing is underway.

Source: Mayo Clinic

Explore further: Researchers pinpoint protein crucial for development of biological rhythms in mice

add to favorites email to friend print save as pdf

Related Stories

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) β€”An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

New method increases supply of embryonic stem cells

Jan 27, 2014

A new method allows for large-scale generation of human embryonic stem cells of high clinical quality. It also allows for production of such cells without destroying any human embryos. The discovery is a big step forward ...

Recommended for you

Team reprograms blood cells into blood stem cells in mice

2 hours ago

Researchers at Boston Children's Hospital have reprogrammed mature blood cells from mice into blood-forming hematopoietic stem cells (HSCs), using a cocktail of eight genetic switches called transcription factors. The reprogrammed ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...