Saltwater solution to save crops

Sep 11, 2008

Technology under development at the University of New South Wales could offer new hope to farmers in drought-affected and marginal areas by enabling crops to grow using salty groundwater.

Associate Professor Greg Leslie, a chemical engineer at UNSW's UNESCO Centre for Membrane Science and Technology, is working with the University of Sydney on technology which uses reverse-osmosis membranes to turn previously useless, brackish groundwater into a valuable agricultural resource.

"We are looking at ways to grow plants on very salty water without damaging soil," Professor Leslie said.

"We're incorporating a reverse osmosis membrane into a sub-surface drip irrigation system."

The irrigation system relies on the roots of the plant drawing salty groundwater through the membrane – in doing so removing the salt which would otherwise degrade the soil and make continued cropping unsustainable.


Desalination such as this requires a pressure gradient to draw clean water through the membrane. Professor Leslie has demonstrated that, by running irrigation lines under the ground beneath the plants, the root systems of the plants provide enough of a pressure gradient to draw up water without the high energy consumption usually required for desalination.

"We're going to provide agriculture with a tool to grow crops in drought years when there is limited access to run-off and surface water," he said.

The membrane technology, developed by Professor Leslie and the University of Sydney's Professor Bruce Sutton, has been patented by UNSW's commercial arm, NewSouth Innovations.

Source: University of New South Wales

Explore further: Soil nutrients may limit ability of plants to slow climate change

Related Stories

Recommended for you

Frontier science in ocean-going lab

1 hour ago

Oceanographer Dr Martina Doblin is preparing for one of the most significant explorations of her career. In early June, a mobile laboratory known as the Micro-CSI will leave from Brisbane aboard Australia's ...

Extending climate predictability beyond El Nino

4 hours ago

Tropical Pacific climate variations and their global weather impacts may be predicted much further in advance than previously thought, according to research by an international team of climate scientists ...

Ocean currents impact methane consumption

21 hours ago

Large amounts of methane - whether as free gas or as solid gas hydrates - can be found in the sea floor along the ocean shores. When the hydrates dissolve or when the gas finds pathways in the sea floor to ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.