Scientists uncover miscalculation in geological undersea record

Sep 10, 2008

The precise timing of the origin of life on Earth and the changes in life during the past 4.5 billion years has been a subject of great controversy for the past century. The principal indicator of the amount of organic carbon produced by biological activity traditionally used is the ratio of the less abundant isotope of carbon, 13C, to the more abundant isotope, 12C.

As plants preferentially incorporate 12C, during periods of high production of organic material the 13C/12C ratio of carbonate material becomes elevated. Using this principle, the history of organic material has been interpreted by geologists using the 13C/12C ratio of carbonates and organics, wherever these materials can be sampled and dated.

While this idea appears to be sound over the last 150 million years or so, prior to this time there are no open oceanic sediment records which record the 13C/12C ratio, and therefore, geologists are forced to use materials associated with carbonate platforms or epicontinental seas.

In order to test whether platform-associated sediments are related to the global carbon cycle, a paper by University of Miami Professor Dr. Peter K. Swart appears in the Proceedings of the National Academy of Sciences. This paper examines changes over the past 10 million years at sites off the Bahamas (Atlantic Ocean), the Maldives (Indian Ocean), and Great Barrier Reef (Pacific Ocean). The variations in the 13C/12C ratio are synchronous at all of the sites studied, but are unrelated to the global change in the 13C/12C ratio.

It appears that records related to carbonate platforms which are often used throughout the early history of the Earth are not good recorders of the 13C/12C ratio in the open oceans. Hence, the work presented suggests that assumptions made previously about changes in the 13C/12C ratios of carbonate sediments in the geological record are incorrect.

"This study is a major step in terms of rethinking how geologists interpret variations in the 13C/12C ratio throughout Earth's history. If the approach does not work over the past 10 million years, then why would it work during older time periods?" said Swart. "As a consequence of our findings, changes in 13C/12C records need to be reevaluated, conclusions regarding changes in the reservoirs of carbon will have to be reassessed, and some of the widely-held ideas regarding the elevation of CO2 during specific periods of the Earth's geological history will have to be adjusted."

Source: University of Miami

Explore further: TRMM satellite sees Tropical Storm Phanfone fragmented

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

NASA's HS3 looks Hurricane Edouard in the eye

3 hours ago

NASA and NOAA scientists participating in NASA's Hurricane and Severe Storms Sentinel (HS3) mission used their expert skills, combined with a bit of serendipity on Sept. 17, 2014, to guide the remotely piloted ...

Tropical Storm Rachel dwarfed by developing system 90E

8 hours ago

Tropical Storm Rachel is spinning down west of Mexico's Baja California, and another tropical low pressure area developing off the coast of southwestern Mexico dwarfs the tropical storm. NOAA's GOES-West ...

NASA ocean data shows 'climate dance' of plankton

11 hours ago

The greens and blues of the ocean color from NASA satellite data have provided new insights into how climate and ecosystem processes affect the growth cycles of phytoplankton—microscopic aquatic plants ...

Glaciers in the grand canyon of Mars?

12 hours ago

For decades, planetary geologists have speculated that glaciers might once have crept through Valles Marineris, the 2000-mile-long chasm that constitutes the Grand Canyon of Mars. Using satellite images, ...

NASA support key to glacier mapping efforts

12 hours ago

Thanks in part to support from NASA and the National Science Foundation, scientists have produced the first-ever detailed maps of bedrock beneath glaciers in Greenland and Antarctica. This new data will help ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Keter
2.3 / 5 (7) Sep 10, 2008
This has potentially huge impact on our understanding of the CO2 related cycles on this planet, and may definitely change our current concept of "global warming."
Velanarris
2.3 / 5 (3) Sep 10, 2008
This has potentially huge impact on our understanding of the CO2 related cycles on this planet, and may definitely change our current concept of "global warming."


Agreed. It will be interesting to find out if previous estimates of CO2 ratios higher than 500ppm are accurate, an over-estimate, or an under-estimate. I would lean towards an under estimate simply due to the volcanism of the past and the incredible sizes of the megaflora from that time, but in all honesty, who knows.
Excalibur
not rated yet Sep 11, 2008
Nope; none of this has any relevance to radiative forcing.