Male-specific neurons directly linked to gender-specific behaviors

Sep 10, 2008

New research identifies a few critical neurons that initiate sex-specific behaviors in fruit flies and, when masculinized, can elicit male-typical courtship behaviors from females. The study, published by Cell Press in the September 11th issue of the journal Neuron, demonstrates a direct link between sexual dimorphism in the brain and gender differences in behavior.

In the fruit fly, Drosophila melanogaster, males display a series of complex and stereotypic behaviors when they are courting a female. Males chase the female while vibrating their wings, producing a love song that has an aphrodisiac influence on the female, who would otherwise take action to escape the male's advances. Later steps in the male courtship behavior involve the initiation and completion of copulation.

"Although previous studies have identified a few key brain areas, such as the dorsal posterior brain, that appear to play a pivotal role in initiating male sexual behavior, nothing is known about the identity of neurons and their circuits in the brain sites which are central to the generation of male courtship behavior," says lead study author Professor Ken-ichi Kimura of the Hokkaido University of Education in Japan.

Professor Kimura and colleagues made use of a sophisticated technique that allowed them to identify, manipulate, and study small groups of cells in the fruit fly brain. The researchers focused on neurons that expressed a gene called fruitless (fru), a known sex-determination gene. The male-specific Fru protein is expressed in the brains of male flies, but not females. Studies have indicated that fru functions in parallel with another sex-determination gene called doublesex (dsx) and that fru may function as a kind of master control gene to direct organization of brain centers for sexual behavior.

A fru/dsx-expressing cell cluster, known as P1, was identified as an important site for initiating male courtship behavior. P1 cells are fated to die in females through the action of a feminizing protein called DsxF. Interestingly, genetic manipulation of females so that they possessed male P1 neurons effectively provoked male-typical courtship behavior in the females, even when other parts of the brain were not masculinized.

"P1 is located in the dorsal posterior brain and is composed of 20 neurons that have projections which communicate with the bilateral protocerebrum," explains Professor Kimura. "We found that the masculinizing protein Fru is required in the male brain for correct positioning of the projections from the P1 neurons."

Taken together, these findings demonstrate that the coordinated action of sex-determination genes dsx and fru confer the unique ability to initiate male-typical sexual behavior on P1 neurons. This research represents one of only a few examples presenting direct evidence for sexually dimorphic mechanisms that underlie gender-specific behavior and is the first to identify a specific cluster of cells that initiate courtship.

Source: Cell Press

Explore further: Biomedical engineer looks at new applications for novel lupus drug

add to favorites email to friend print save as pdf

Related Stories

3Qs: Gender balance in biomedical research

May 30, 2014

Earlier this month the National Institutes of Health announced that going forward all biomedical research funded by the NIH must represent a balanced sample of both male and female test subjects. We asked ...

Mind alteration device makes fruit flies sing and dance

May 26, 2014

In a joint effort, with collaboration partners from the Vienna University of Technology and the Howard Hughes Medical Institute, the team of Andrew Straw at the Research Institute of Molecular Pathology (IMP) ...

Recommended for you

Immune response may cause harm in brain injuries, disorders

1 hour ago

Could the body's own immune system play a role in memory impairment and cognitive dysfunction associated with conditions like chronic epilepsy, Alzheimer's dementia and concussions? Cleveland Clinic researchers believe so, ...

One route to malaria drug resistance found

5 hours ago

Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious ...

Protein therapy successful in treating injured lung cells

5 hours ago

Cardiovascular researchers at The Ohio State University Wexner Medical Center have successfully used a protein known as MG53 to treat acute and chronic lung cell injury. Additionally, application of this protein proved to ...

User comments : 0