Study finds a new mechanism for how methamphetamine affects the developing fetal brain

Sep 09, 2008

(PhysOrg.com) -- University of Toronto researchers have discovered a new mechanism in mice that shows how the exposure to the illicit drug methamphetamine (METH) during pregnancy can adversely affect the developing fetal brain.

METH is converted in the fetal brain to unstable free radical metabolites that react with oxygen within cells to produce highly active oxygen intermediates, termed reactive oxygen species (ROS). ROS can cause oxidative damage to structures within the cell. One of these targets is DNA, which normally directs the manufacture of proteins essential for brain development. If the repair of oxidative DNA damage is insufficient, the fetus is born looking normal, but exhibiting long-term impairments in brain function.

"Although oxidative DNA damage has long been associated with mutations and cancer, our study provides the most direct evidence to date that this mechanism can adversely affect critical events in the developing fetus," said Professor Peter Wells of the Leslie Dan Faculty of Pharmacy, senior author of the study that appears in the September issue of the Journal of Neuroscience.

Using genetically altered pregnant mice lacking an important protein for repairing oxidative DNA damage, oxoguanine glycosylase 1 (OGG1), Wells, doctoral students Andrea Wong and Winnie Jeng, and postdoctoral fellow Gordon McCallum showed that METH-exposed fetuses lacking OGG1 had higher levels of oxidative DNA damage in the brain compared to littermates with normal OGG1 activity. They also had a correspondingly greater deficiency in motor coordination for at least 3 months after birth.

METH-exposed fetuses with normal OGG1 activity were normal and comparable to control fetuses exposed only to the saline vehicle, indicating that normal DNA repair was completely protective at this level of METH exposure.

These results show not only that oxidative DNA damage can adversely affect the developing fetus, but also that fetal deficiencies in the pathways that repair this damage can constitute a risk factor for neurodevelopmental deficits, in this case manifested by long-term motor coordination deficits.

Although the team's findings cannot be extrapolated to humans without further study, Wells believes they do suggest a novel mechanism through which METH may contribute to neurodevelopmental deficits, as well as potential risk factors for individual susceptibility.

Provided by University of Toronto

Explore further: Clipping proteins that package genes may limit abnormal cell growth in tumors

add to favorites email to friend print save as pdf

Related Stories

Senators get no clear answers on air bag safety

6 hours ago

There were apologies and long-winded explanations, but after nearly four hours of testimony about exploding Takata air bags, senators never got a clear answer to the question most people have: whether or ...

Nicaragua: Studies say canal impact to be minimal

6 hours ago

Officials said Thursday that studies have determined a $40 billion inter-oceanic canal across Nicaragua will have minimal impact on the environment and society, and construction is to begin next month.

Former Brown dean whose group won Nobel Prize dies

6 hours ago

David Greer, a doctor who co-founded a group that won the 1985 Nobel Peace Prize for working to prevent nuclear war and who helped transform the medical school at Brown University, has died. He was 89.

Recommended for you

Organovo has 3D-printed liver tissue for drug testing

Nov 20, 2014

(Medical Xpress)—The commercial release of 3D printed liver tissue was announced earlier this week. Organovo is the company behind the release. The product is intended for use for preclinical drug discovery ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.