Study finds a new mechanism for how methamphetamine affects the developing fetal brain

Sep 09, 2008

(PhysOrg.com) -- University of Toronto researchers have discovered a new mechanism in mice that shows how the exposure to the illicit drug methamphetamine (METH) during pregnancy can adversely affect the developing fetal brain.

METH is converted in the fetal brain to unstable free radical metabolites that react with oxygen within cells to produce highly active oxygen intermediates, termed reactive oxygen species (ROS). ROS can cause oxidative damage to structures within the cell. One of these targets is DNA, which normally directs the manufacture of proteins essential for brain development. If the repair of oxidative DNA damage is insufficient, the fetus is born looking normal, but exhibiting long-term impairments in brain function.

"Although oxidative DNA damage has long been associated with mutations and cancer, our study provides the most direct evidence to date that this mechanism can adversely affect critical events in the developing fetus," said Professor Peter Wells of the Leslie Dan Faculty of Pharmacy, senior author of the study that appears in the September issue of the Journal of Neuroscience.

Using genetically altered pregnant mice lacking an important protein for repairing oxidative DNA damage, oxoguanine glycosylase 1 (OGG1), Wells, doctoral students Andrea Wong and Winnie Jeng, and postdoctoral fellow Gordon McCallum showed that METH-exposed fetuses lacking OGG1 had higher levels of oxidative DNA damage in the brain compared to littermates with normal OGG1 activity. They also had a correspondingly greater deficiency in motor coordination for at least 3 months after birth.

METH-exposed fetuses with normal OGG1 activity were normal and comparable to control fetuses exposed only to the saline vehicle, indicating that normal DNA repair was completely protective at this level of METH exposure.

These results show not only that oxidative DNA damage can adversely affect the developing fetus, but also that fetal deficiencies in the pathways that repair this damage can constitute a risk factor for neurodevelopmental deficits, in this case manifested by long-term motor coordination deficits.

Although the team's findings cannot be extrapolated to humans without further study, Wells believes they do suggest a novel mechanism through which METH may contribute to neurodevelopmental deficits, as well as potential risk factors for individual susceptibility.

Provided by University of Toronto

Explore further: Live cell imaging reveals distinct alterations of subcellular glutathione potentials

add to favorites email to friend print save as pdf

Related Stories

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Plasma tool for destroying cancer cells

Mar 25, 2014

Plasma medicine is a new and rapidly developing area of medical technology. Specifically, understanding the interaction of so-called atmospheric pressure plasma jets with biological tissues could help to ...

Arsenic biomethylation required for oxidative DNA damage

Nov 23, 2009

Biomethylation of arsenic compounds appears to cause oxidative DNA damage and to increase their carcinogenicity, according to a new study published online November 23 in the Journal of the National Cancer Institute.

Recommended for you

Leeches help save woman's ear after pit bull mauling

5 hours ago

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

New pain relief targets discovered

17 hours ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

18 hours ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

User comments : 0

More news stories

Vietnam battles fatal measles outbreak

Vietnam is scrambling to contain a deadly outbreak of measles that has killed more than 100 people, mostly young children, and infected thousands more this year, the government said Friday.