Science paper examines role of aerosols in climate change

Sep 05, 2008

A group of scientists affiliated with the International Geosphere-Biosphere Programme (IGBP) have proposed a new framework to account more accurately for the effects of aerosols on precipitation in climate models. Their work appears in the 5 September issue of Science magazine.

The increase in atmospheric concentrations of man-made aerosols—tiny particles suspended in the air—from such sources as transportation, industry, agriculture, and urban land use not only poses serious problems to human health, but also has an effect on weather and climate.

Recent studies suggest that increased aerosol loading may have changed the energy balance in the atmosphere and at the Earth's surface, and altered the global water cycle in ways that make the climate system more prone to precipitation extremes.

It appears that aerosol effects on clouds can induce large changes in precipitation patterns, which in turn may change not only regional water resources, but also may change the regional and global circulation systems that constitute the Earth's climate.

The proposed framework improves scientists' ability to simulate present and future climates by integrating, for the first time, the radiative and microphysical effects of aerosols on clouds. The radiative effects of aerosols on clouds mostly act to suppress precipitation, because they decrease the amount of solar radiation that reaches the land surface, and therefore cause less heat to be available for evaporating water and energizing convective rain clouds. Microphysical effects of aerosols can slow down the conversion of cloud drops into raindrops, which shuts off precipitation from very shallow and short-lived clouds.

Model simulations suggest that this delay of early rain causes greater amounts of cloud water and rain intensities later in the life cycle of the cloud. This suggests that rain patterns are shifting, leading to possible drought in one area and flooding downwind in another area. In addition, greater cooling below and heating above leads to enhanced upward heat transport. Model simulations have shown that greater heating in the troposphere enhances the atmospheric circulation system, shifting weather patterns due to changes convective activity.

Investigations of aerosol/precipitation effects are especially relevant to policy issues, as effects on the hydrological cycle may affect water availability, a great concern in many regions of the world. The IPCC, in its latest climate change assessment report, declared aerosols to be "the dominant uncertainty in radiative forcing (a concept used for quantitative comparisons of the strength of different human and natural agents in causing climate change)". Therefore, aerosols, clouds and their interaction with climate are still the most uncertain areas of climate change and require multidisciplinary coordinated research efforts.

To that end, authors of the Science article are participating in a new, international research project designed to study the connections between aerosols, clouds, precipitation and climate (ACPC project). The project will bring together an international multidisciplinary group of scientists from the areas of aerosol physics and chemistry, cloud dynamics, and cloud microphysics under theauspices of two international research programmes, the International Geosphere-BiosphereProgramme (IGBP) and the World Climate Research Programme (WCRP).

Source: International Geosphere-Biosphere Programme

Explore further: New water balance calculation for the Dead Sea

add to favorites email to friend print save as pdf

Related Stories

NASA's ten-year-old Aura satellite tracks pollutants

Jul 17, 2014

(Phys.org) —NASA's Aura satellite, celebrating its 10th anniversary on July 15, has provided vital data about the cause, concentrations and impact of major air pollutants. With instruments providing key ...

Global warming culprit-nations likely to change by 2030

Jul 17, 2014

(Phys.org) —While developed countries and regions have long been culprits for Earth's rising greenhouse gas emissions, Cornell researchers – balancing the role of aerosols along with carbons in the equation ...

Climate engineering offers little hope of mitigation

Jul 04, 2014

Injecting particles into the stratosphere to shade and cool the Earth will never stop climate change. This is the shocking claim made in the July issue of Nature Climate Change by an international group ...

The volcano of a hundred thousand mouths

Jul 02, 2014

When the 1893 World's Fair opened in Chicago, fairgoers aboard the world's first Ferris wheel soared high enough to compare two cities: the White City—gleaming whitewashed architecture built for the massive ...

Recommended for you

New water balance calculation for the Dead Sea

9 hours ago

The drinking water resources on the eastern, Jordanian side of the Dead Sea could decline severe as a result of climate change than those on the western, Israeli and Palestinian side. This is the conclusion ...

Studying wetlands as a producer of greenhouse gases

15 hours ago

(Phys.org) —Wetlands are well known for their beneficial role in the environment. But UConn Honors student Emily McInerney '15 (CAHNR) is studying a less widely known role of wetlands – as a major producer ...

User comments : 0