New evidence on the robustness of metabolic networks

Sep 04, 2008

Biological systems are constantly evolving in ways that increase their fitness for survival amidst environmental fluctuations and internal errors. Now, in a study of cell metabolism, a Northwestern University research team has found new evidence that evolution has produced cell metabolisms that are especially well suited to handle potentially harmful changes like gene deletions and mutations.

The results, published online this week in the journal PNAS, could be useful in areas where researchers want to manipulate metabolic network structure, such as in bioengineering and medicine, and in the design of robust synthetic networks for use in energy production and distribution networks and in critical infrastructures, such as transportation networks.

The research was led by Julio M. Ottino, dean of the McCormick School of Engineering and Applied Science and Walter P. Murphy Professor of Chemical and Biological Engineering. Other authors of the paper, titled "Cascading failure and robustness in metabolic networks," are Luís A. Nunes Amaral, associate professor of chemical and biological engineering, and lead author Ashley Smart, who recently received his doctoral degree from Northwestern and is now a postdoctoral fellow at the California Institute of Technology.

Cell metabolism is essentially a large network of reactions whose purpose is to convert nutrients into products and energy. Because the network is highly interconnected, it is possible for a single reaction failure (which may be precipitated by a gene deletion or mutation) to initiate a cascade that affects several other reactions in the system. This event could be likened to disturbing a small area of snow that may trigger a large avalanche or the failure of a single transmission line in an electric power grid that may cause a widespread blackout.

By measuring the size of these "cascade" events in simulated metabolic networks, the Northwestern researchers were able to develop a quantitative measure of metabolic robustness: the more robust the network, the less the probability that small disturbances produce large cascades.

They found that the likelihood of large failure cascades in a metabolic network is unusually small, compared to what they would expect from comparable, randomly structured networks.

In other words, these metabolic networks have evolved to be exceptionally robust, adopting organizational structures that help minimize the potentially harmful impacts of gene deletions and mutations. Ottino and his colleagues developed a mathematical model describing the cascading failure phenomenon as a percolation-like process.

The cascading failure model opens up new possibilities for developing math- and statistics-based descriptions of how network structure affects metabolic function in biological systems. The relationship between metabolic structure and function is an important, lingering question for researchers in areas such as bioengineering and disease treatment in medicine, where one goal is to manipulate metabolic network structure in order to obtain desired behaviors.

The Northwestern team concludes it is possible that nature, in this case, is the best teacher: improved understanding of how cell metabolisms have evolved to handle failure cascades may provide clues as to how one might design synthetic networks for similar robustness.

Source: Northwestern University

Explore further: Rare new species of plant: Stachys caroliniana

add to favorites email to friend print save as pdf

Related Stories

Oversized fat droplets: Too much of a good thing

Aug 29, 2012

As the national waistline expands, so do pools of intra-cellular fat known as lipid droplets. Although most of us wish our lipid droplets would vanish, they represent a cellular paradox: on the one hand droplets ...

Better think positive: Pessimism can block therapy

Feb 28, 2011

Spine surgeon Anders Cohen puts a lot of stock in patients' expectations of pain relief. He prefers to operate only on those who "grab you by the collar and say, `I can't take it anymore.'"

Recommended for you

Rare new species of plant: Stachys caroliniana

Nov 21, 2014

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

Mysterious glowworm found in Peruvian rainforest

Nov 21, 2014

(Phys.org) —Wildlife photographer Jeff Cremer has discovered what appears to be a new type of bioluminescent larvae. He told members of the press recently that he was walking near a camp in the Peruvian ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.