Growth factor predicts poor outcome in breast cancer

Aug 29, 2008

The response to insulin-like growth factor 1 (IGF-I) in breast cancer cells predicts an aggressive tumor that is less likely to respond to treatment, said researchers at Baylor College of Medicine in a report that appears in the current issue of the Journal of Clinical Oncology. The finding gives impetus to the movement to tailor cancer treatments to attributes of the various tumors.

"These findings come at a critical time," said Dr. Adrian Lee, associate professor in the Lester and Sue Smith Breast Center at BCM. "Our goal is to identify biomarkers that will help predict which patients will respond to therapy against insulin-like growth factor. Several inhibitors of the IGF pathway are in patient studies right now. There's a large movement to understand which patients will respond to these drugs. This is a step toward that goal?

In this study, Lee and his colleagues stimulated breast cancer cells with IGF-I in the laboratory and defined how more than 800 genes in the cells responded to the growth factor. They then examined samples of patient breast tumors with this "gene signature" and correlated the gene signatures with the fate of the patients.

"We have technology now to allow us to globally assess what IGF is doing in breast cancer at the whole gene expression level," said Lee. "This is one of the first studies to do that. We know that IGF is bad in cancer, but now we can globally understand it in a more comprehensive manner. It could lead to finding biomarkers for patients response" to breast cancer treatments.

"We found that IGF-I is a major regulator of cell growth and cell survival," said Lee. "It also regulates DNA repair."

This has major implications for anti-cancer treatments that seek to cause DNA damage and tumor cell death.

"If you have something regulating DNA repair, you want that turned off," said Lee.

They found that tumors in which IGF (insulin-like growth factor) affected the way in which genes were activated or translated into messages were more aggressive and more likely to grow. They also found that the effect of IGF was independent of whether the tumor was affected by estrogen or not.

"This is very important," said Lee. "Once patients are resistant to hormone treatment (as with tamoxifen), their treatment options are limited. A treatment that inhibited receptors for IGF might give them another option."

Currently, the Breast Center is studying the effects of an IGF receptor antibody combined with a drug called exemestane (Aromasin® or an aromatase inhibitor that blocks estrogen production) in postmenopausal women. One group of women take the combination and the other takes exemestane.

Bioinformatics – the ability to analyze large amounts of data – proved key to the study, said Lee. In fact, the first author, Dr. Chad J. Creighton of BCM, is a bioinformatician, said Lee.

Source: Baylor College of Medicine

Explore further: Is genetic instability the key to beating cancer?

add to favorites email to friend print save as pdf

Related Stories

Combination overcomes breast cancer resistance to herceptin

Mar 13, 2011

Breast cancer tumors take numerous paths to resist the targeted drug Herceptin, but a single roadblock at a crucial crossroads may restore a tumor's vulnerability to treatment, scientists at The University of Texas MD Anderson ...

Recommended for you

New breast cancer imaging method promising

54 minutes ago

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could ...

Palliation is rarely a topic in studies on advanced cancer

1 hour ago

End-of-life aspects, the corresponding terminology, and the relevance of palliation in advanced cancer are often not considered in publications on randomized controlled trials (RCTs). This is the result of an analysis by ...

Breast cancer replicates brain development process

1 hour ago

New research led by a scientist at the University of York reveals that a process that forms a key element in the development of the nervous system may also play a pivotal role in the spread of breast cancer.

Is genetic instability the key to beating cancer?

3 hours ago

Cancerous tumors may be poised at the edge of their own destruction, an insight that could help researchers find new, more effective treatments, suggest SFI External Professor Ricard Solé and colleagues in an April 9 paper ...

Phase 3 study may be game-changer for acute myeloid leukemia

6 hours ago

Moffitt Cancer Center researchers say clinical trials for a new experimental drug to treat acute myeloid leukemia (AML) are very promising. Patients treated with CPX-351, a combination of the chemotherapeutic drugs cytarabine ...

User comments : 0

More news stories

New breast cancer imaging method promising

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could ...

Breast cancer replicates brain development process

New research led by a scientist at the University of York reveals that a process that forms a key element in the development of the nervous system may also play a pivotal role in the spread of breast cancer.

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Using antineutrinos to monitor nuclear reactors

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...