Scientists discover minimum mass for galaxies

Aug 27, 2008
Satellite galaxies studied by UCI researchers that are within 500,000 light-years from the Milky Way.

(PhysOrg.com) -- By analyzing light from small, faint galaxies that orbit the Milky Way, UC Irvine scientists believe they have discovered the minimum mass for galaxies in the universe – 10 million times the mass of the sun.

This mass could be the smallest known "building block" of the mysterious, invisible substance called dark matter. Stars that form within these building blocks clump together and turn into galaxies.

Scientists know very little about the microscopic properties of dark matter, even though it accounts for approximately five-sixths of all matter in the universe.

"By knowing this minimum galaxy mass, we can better understand how dark matter behaves, which is essential to one day learning how our universe and life as we know it came to be," said Louis Strigari, lead author of this study and a McCue Postdoctoral Fellow in the Department of Physics and Astronomy at UCI.

Study results are published Aug. 28 in the journal Nature.

Dark matter governs the growth of structure in the universe. Without it, galaxies like our own Milky Way would not exist. Scientists know how dark matter's gravity attracts normal matter and causes galaxies to form. They also suspect that small galaxies merge over time to create larger galaxies such as our Milky Way.

The smallest known galaxies, called dwarf galaxies, vary greatly in brightness, from 1,000 times the luminosity of the sun to 10 million times the luminosity of the sun. At least 22 of these dwarf galaxies are known to orbit the Milky Way. UCI scientists studied 18 of them using data obtained with the Keck telescope in Hawaii and the Magellan telescope in Chile, with the goal of calculating their masses. By analyzing stars' light in each galaxy, they determined how fast the stars were moving. Using those speeds, they calculated the mass of each galaxy.

The researchers expected the masses to vary, with the brightest galaxy weighing the most and the faintest galaxy weighing the least. But surprisingly all dwarf galaxies had the same mass – 10 million times the mass of the sun.

Manoj Kaplinghat, a study co-author and physics and astronomy assistant professor at UCI, explains this finding using an analogy in which humans play the role of dark matter.

"Suppose you are an alien flying over Earth and identifying urban areas from the concentration of lights in the night. From the brightness of the lights, you may surmise, for example, that more humans live in Los Angeles than in Mumbai, but this is not the case," Kaplinghat said. "What we have discovered is more extreme and akin to saying that all metro areas, even those that are barely visible at night to the aliens, have a population of about 10 million."

Since dwarf galaxies are mostly dark matter – the ratio of dark matter to normal matter is as large as 10,000 to one – the minimum-mass discovery reveals a fundamental property of dark matter.

"We are excited because these galaxies are virtually invisible, yet contain a tremendous amount of dark matter," said James Bullock, a study co-author and director of UCI's Center for Cosmology. "This helps us better understand the particle that makes up dark matter, and it teaches us something about how galaxies form in the universe."

The scientists say clumps of dark matter may exist that contain no stars. The only dark matter clumps they can detect right now are those that are lit by stars.

Scientists hope to learn about dark matter's microscopic properties when the Large Hadron Collider in Switzerland becomes operational later this year. The device will accelerate two beams of nuclei in a ring in opposite directions and then slam them together to recreate conditions just after the Big Bang. By doing this, scientists hope to create the dark matter particle in the lab for the first time.

Provided by University of California - Irvine

Explore further: Raven soars through first light and second run

add to favorites email to friend print save as pdf

Related Stories

Witnessing the early growth of a giant

Aug 27, 2014

Astronomers have uncovered for the first time the earliest stages of a massive galaxy forming in the young Universe. The discovery was made possible through combining observations from the NASA/ESA Hubble ...

A possible signal from dark matter?

Aug 12, 2014

(Phys.org) —Galaxies are often found in groups or clusters, the largest known aggregations of matter and dark matter. The Milky Way, for example, is a member of the "Local Group" of about three dozen galaxies, ...

A spectacular landscape of star formation

Aug 20, 2014

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

New survey begins mapping nearby galaxies

Aug 18, 2014

A new survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) has been launched that will greatly expand our understanding of galaxies, including the Milky Way, by charting the internal ...

Recommended for you

Raven soars through first light and second run

17 hours ago

Raven, a Multi-Object Adaptive Optics (MOAO) science demonstrator, successfully saw first light at the Subaru Telescope on the nights of May 13 and 14, 2014 and completed its second run during the nights ...

How can we find tiny particles in exoplanet atmospheres?

Aug 29, 2014

It may seem like magic, but astronomers have worked out a scheme that will allow them to detect and measure particles ten times smaller than the width of a human hair, even at many light-years distance.  ...

User comments : 7

Adjust slider to filter visible comments by rank

Display comments: newest first

Alizee
Aug 27, 2008
This comment has been removed by a moderator.
mattytheory
3.3 / 5 (3) Aug 27, 2008
Thank you Alizee, you took the words right out of my mouth.
k_m
1 / 5 (4) Aug 28, 2008
And when did "dark matter" become fact?
yyz
not rated yet Aug 28, 2008
I agree w-Alizee that the lines between dwarf galaxy, globular cluster, extended cluster & ultra-compact dwarf are blurring & in need of qualitative & quantitative definitions. However, the mass limits on these small systems must be telling us something vital in our understanding of them & of DM itself. These observations only add to clues astrophysicists will need to make valid & useful models of both small intergalactic stellar associations & the nature of DM. Nature is trying to tell us something here (and it's not that DM theory is wrong, useless, fabricated, etc.).
seanpu
1 / 5 (3) Aug 29, 2008
DM and DE dont exist. shame really, they wasted their time with this.
earls
4 / 5 (1) Aug 29, 2008
seanpu doesn't exist
yyz
not rated yet Aug 29, 2008
I concur with earls, seanpu doesn't exist. Maybe AGM has an answer for this, and if not, I'm sure astrology does.
yyz
not rated yet Aug 29, 2008
The paper referred to in the article was posted today on the arXiv site. Entitled 'A common mass scale for satellite galaxies of the Milky Way' @ arXiv:0808.3772v1 . In the paper the authors conclude that tidal forces from our MWG were not the cause of their results. The 18 dwarf galaxies were all located at least 30kpc from the Milky Way. They suggest a form of Hot Dark Matter (as opposed to the more commonly used Cold Dark Matter [CDM] scenario) may be the cause of this monumental finding. I think their results are trying to tell us something very important about our universe & how it works. Anyway, congrats to the team that made these difficult observations & may they lead the way to a better understanding of DM in our universe.